Amaroo’s Consensus Strategy: Ultra Terminum

by Max Kaye

Nos Ultra Terminum Ultimum Imus, Nunc
July 2274 2025

Abstract

This paper explains and constructs Amaroo’s consensus mechanism: Ultra Terminum.

Ultra Terminum (UT) is a proof-agnostic cross-chain consensus strategy with multiple scaling configura-
tions, and provides a practical solution to the Blockchain Trilemma (a.k.a. Scalability Trilemma). Although
UT is proof-agnostic, using Proof of Work as the foundational method of proof provides decisive advantages
to security, scalability, and user experience.

The Trilemma takes O(c) as the measure of a traditional blockchain’s scalability — ¢ being a normal
computer’s capacity. UT’s simplest configuration, UT1, scales quadratically — O(c?). UT’s other scaling
configurations are: UTs (O(c*)), UT3 (O(c*)), and UTx (theoretically O(n), where n ~ size of the network).

Proof of Reflection, a new consensus primitive, is the key to UT’s performance and security. Proof of
Work configurations of UT meet or exceed the security of traditional PoW blockchains.

With reasonable parameters (i.e., a per-chain load comparable to Bitcoin, and one level of nested
dapp-chains), a conservative estimate of capacity — using Amaroo’s intended launch configuration (UTs) —
exceeds 350K TPS without layer 2 scaling methods.

Capacity of UTy is independent of those parameters and is theoretically unbounded by the architecture.
It is combined with the previous variants to produce UTx1, UTx2, and UTxs.

Confirmation times within UT are O(c™ '), i.e., confirmation rate is O(c). The initial configuration
will have a maximum confirmation frequency exceeding ~10 Hz. Typically, sharded blockchains have a
confirmation frequency < 0.2 Hz.

Some existing sharded (or otherwise O(c?)) blockchain designs claim to be capable of 1M TPS. By
comparison, UTy configurations — with equivalent parameters — have a maximum capacity exceeding
10B TPS. Such a configuration would have a system-wide maximum throughput exceeding 2000 GB/s of
transaction data, and a confirmation frequency exceeding 400 Hz. UT out-scales the architectures of Eth2,
Polkadot, Cardano, and Solana by orders of magnitude.

This paper’s source code available at https://github.com/amaroohq/whitepaper

1 of 155 Compiled:
2025/07/22 at 16:00:25

43830880 e 2025-07-22

https://github.com/amaroohq/whitepaper

CONTENTS

Contents
1 Introduction
1.1 The Blockchain Trilemma
1.2 Ultra Terminum 0 0 e e e e e e e e e e e
1.3 Paper Roadmap. o e e e e
2 Proof of Reflection
2.1 A Projection of Bitcoin in Ethereum
2.2 Incrementally Implementing Proof of Reflection
2.3 Comparing Incomparable Proofs of Work
2.4 Conversion Contexts e
2.5 Converting Confirmations o
2.6 Reflection Between PoW and PoS Chains
2.7 Counting Work e e e
3 UT;: Constructing Ultra Terminum
3.1 Generalizing Reflection L o
3.2 UTy: The Simplex o . o o e e e e e e e e e e
3.3 UTy: Scaling Complexity Intuition
3.4 UTy: Dapp-chains 0 o e
4 Practical Considerations for UT’s Design
4.1 The Availability of Reflected Blocks L.
4.2 Proving Reflection
4.3 Segmented State
4.4 Exploiting Segmented State L o
4.5 Stateless Full Nodes and Fraud Proofs
4.6 The PoR Graph e e e
4.7 Confirmation Times 0 e e e e e e e
4.8 DoSand DAGs e e e
4.9 Lowering Block Production Variance
4.10 Simplex Security and the Confirmation Equivalence Conjecture
4.11 Intra-Simplex Cross-Chain Transactions
4.12 Expedited Transactions L L e
4.13 Imitial Configuration L e
5 Scaling Complexity Analysis of Ultra Terminum
5.1 Analysis Methodology e
5.2 Complexity of O(c) Chains
5.3 Optimistic Complexity of O(c?) Chains
54 Complexity of UTy . . . o o . 000 o
5.5 Dapp-Chains and the Complexity of UTy and UT3
5.6 Complexity of Cross-Chain SPV Proofs & Proofs of Reflection
5.7 TPS Complexity Comparison
5.8 Bandwidth Complexity
5.9 The Impact of Header Size L o e
5.10 Comparison of UT Variants,
6 UTy: Tiling Simplexes
6.1 Simplex Tilings oL
6.2 Tile Valence o e
6.3 Tree-Tilings L
6.4 Recursive Proof of Reflection e
6.5 Tree-Tiling Security o . o e
6.6 Scaling Complexity oL e

2 of 155

[git] = 43830880 = 2025-07-22

00 ~J = B

10
18
26
32
34
36

37
37
38
39
39

48
48
49
50
o1
53
54
65
66
(s
78
87
98

104

105
105
106
106
107
108
110
110
111
113
113

CONTENTS

7 Attacks

7.1 Dialog: Attacks and Mitigation

8 Conclusions

8.1 Addressing the Blockchain Trilemma
8.2 Addressing the Stronger Trilemma
8.3 Terminus Est oL

9 Criticisms of UT
Notation, Nomenclature
Glossary

List of Figures, Tables
References

A Comparison: “The Big 4”
B UT Variant Complexities

C CEC Experiment Extra

3 of 155

[git] = 43830880 = 2025-07-22

128
128

131
131
132
132

135

136

138

140

142

143

146

151

1 Introduction

Blockchains are complex systems and each component affects the system in a number of different
ways. When designing a blockchain network, we must therefore carefully consider these components
and their interactions, and the context that the chain will operate in. These choices are encoded in
the protocol and the consequences of those choices can last for the entire lifetime of the network.

Naturally, when designing systems, some problems are left to be solved later — not everything can
or should be done up-front. The most common problem that blockchain designers have left in
the ‘solve later’ pile is the long-term scalability of the network. In turn, this neglect gave rise to
a generation of blockchain designs that tried (and failed) to provide a scalable solution without
abandoning the other core properties of a blockchain. Existing chains began to adapt, too — Bitcoin
introduced SegWit, and Ethereum developed a plan to transition to a sharded design secured by
Proof of Stake (an effort which is still ongoing, 10 years later). Despite all of this, a solution to this
problem remains elusive.

Before long, this problem was codified as a trilemma by Vitalik Buterin. In this paper, we’ll refer to
it as the Blockchain Trilemma or the Trilemma, though it is also known as the Scalability Trilemma.
It states that, for blockchain designs, there is a ‘choose two out of three’-type relationship between
(i) security, (ii) scalability and (iii) decentralization (discussed below in Section 1.1).

The shortcomings of popular existing designs which have prioritized security and decentralization
are readily apparent thanks to congestion: transactions take longer to be confirmed, fees rise,
business is disrupted, and costs explode. When security and decentralization are prioritized over
scalability, there will, inevitably, be a shortage of capacity at some stage.

)

Other combinations of trilemma properties have been tried as well. Secure and scalable “blockchains’
have been attempted, but are fragile and centralized. Scalable and decentralized systems exist, but
lack the fundamental properties of a blockchain, such as presenting a single, consistent record of
events to all users.

Amaroo’s underlying consensus mechanism, Ultra Terminum (UT), is a cooperative cross-chain
consensus strategy that addresses the Trilemma and creates cohesion between chains.

Compared to existing consensus methods, UT provides equal or better security properties (including
Bitcoin’s PoW method and variants, and all PoS variants). This is because UT combines existing
consensus methods and, by way of construction, UT can only add security to these methods.

UT is capable of supporting millions of transactions per second with similar chain parameters (like
block size) to those of traditional blockchains (like Bitcoin or Eth1').

1.1 The Blockchain Trilemma

The trilemma is as follows:

Given ¢ (computational resources per node, e.g., computation, bandwidth, storage, etc.), and n
(the size of the network, e.g., transaction throughput, state size, user population, market cap, etc.),
blockchain systems have no more than two of these three properties:

o Decentralization — the system can operate with participants that have only O(c) resources
(e.g., a laptop, a raspberry pi, a VPS; typical internet bandwidth, storage space, etc.).

« Security — the system is secure against attackers with up to O(n) resources.”

o Scalability — the system can process O(n) transactions, with O(n) > O(c); this means that,
as the network grows, the throughput of the system grows faster than the computational
resources required per user.

IThe term Ethl refers to the original Proof of Work Ethereum (pre-merge), and Eth2 refers to the Sharded
Proof of Stake Beacon Chain. The terms were originally adopted to describe the different designs on the Ethereum
Roadmap; but they’ve since been deprecated. They’ve not been updated in this paper because they are functional
for our purposes: to distinguish between PoW Ethereum and the various PoS iterations.

4 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220606205028/https://eth.wiki/sharding/Sharding-FAQs
https://web.archive.org/web/20241128055038/https://ethereum.org/en/roadmap/
https://web.archive.org/web/20241128055038/https://ethereum.org/en/roadmap/

Aside

Quote

1 INTRODUCTION

This definition of scalability is perhaps problematic. If the network, which has O(n) TPS demand,
becomes bottlenecked by an O(c?) scaling method, is the network really scalable? I prefer an
alternative definition of scalability: the system can process O(n) transactions in O(1) time, i.e.,
getting a transaction confirmed is neither too expensive nor delayed as n and/or ¢ change.’

Why mention O(c?) scaling particularly? Why is that an important breakpoint for scaling configu-
rations? In a word: sharding. The standard method of sharding (or hosting child-chains generally)
is to replace transactions with shard-headers in the host-chain. Extra data might also be required.
If the host-chain has O(c) capacity, then it should support® O(c) shards. Each shard has O(c)
capacity also, thus the full system has O(c?) capacity.

Traditionally, the use of big O notation when discussing the trilemma has not conformed to
the strict mathematical meaning; instead, it is used quite loosely as a way to analyze the
scalability of a blockchain architecture. Naturally, we’ll continue this tradition.

1.1.1 Core Conflict

[Stay decentralized}—[Use many chains and small blocks}

[Safely increase capacity} Conflict

\

Figure 1: A “cloud” diagram of the core conflict of the Blockchain Trilemma.
A — B can be read “A so that B”; and A < B: “A requires B”.

[Use one chain and big blocks}

Figure 1 shows a cloud® for the core conflict. It reads: safely increasing capacity requires that we
stay decentralized. Staying decentralized requires that we use many chains and small blocks. Safely
increasing capacity requires that the network stays secure. Staying secure requires that we use
big blocks. Big blocks are the opposite of small blocks, so we have a conflict. Additionally: using
multiple chains compromises security; and big blocks compromise decentralization.

To understand the core conflict, we need to look at the underlying assumptions.

Buterin writes® in the Ethereum sharding FAQ regarding the many chains with small blocks strategy:
[...] This greatly increases throughput, but at a cost of security: an N-factor increase in
throughput using this method necessarily comes with an N-factor decrease in security, as

a level of resources 1/N the size of the whole ecosystem will be sufficient to attack any
individual chain. [...]

He writes, regarding the big blocks strategy:

2Here, by convention, “up to O(n) resources” means that the system remains secure against attackers with less
than some critical proportion of the network’s block production capacity — e.g., less than 1/2 for typical PoW chains,
and less than 1/3 for typical PoS chains.

3This does not mean there is no fee market for transactions, nor that localized congestion will not happen. Rather,
we are interested in an equilibrium that provides substantial value and capacity whilst avoiding transactions being as
free as sending an email.

4Presuming a secure method of sharding is known and in use, and O(1) load per shard-header.

5Clouds are diagrams of explanatory implications which reveal a conflict between two (apparently) necessary
things. For more on clouds, see It’s Not Luck by Eli Goldratt (1994).

6See On sharding blockchains FAQs.

5 of 155

[git] = 43830880 = 2025-07-22

https://www.google.com/search?q=ISBN+0-88427-115-3
https://web.archive.org/web/20220606205028/https://eth.wiki/sharding/Sharding-FAQs

Quote

Quote

1.1 The Blockchain Trilemma,

[...] such an approach inevitably has its limits: if one goes too far, then nodes running on
consumer hardware will drop out, the network will start to rely exclusively on a very small
number of supercomputers running the blockchain, which can lead to great centralization
risk.

A mistaken way to break the conflict is merged mining (a.k.a. AuxPoW). This method attempts to
share security between chains, so that one might be able to have decentralization and security via
small blocks and merged mined chains/shards (sometimes called side-chains). Buterin writes:

[...] If all miners participate, this theoretically can increase throughput by a factor of N
without compromising security. However, this also has the problem that it increases the
computational and storage load on each miner by a factor of N, and so in fact this solution
is simply a stealthy form of block size increase.

Figure 2 shows the cloud for the merged mining conflict.

[Stay decentrahzed}— validate all chains

/

Safely increase capacity Conflict
via merged mining Miners are Users

T~

[Securely add more chains}«—

[Users don’t have to }

Miners must
validate all chains

Figure 2: A cloud showing the scaling conflict of merged mining.

An underlying assumption here is that maximally sharing security across the network requires
miners to maintain a record of all chains and do validation on all those chains. The naive solution
(using many chains, mentioned above) conflicts with secure methods of merged mining. It seems
like progress is impossible.

We have some hints to conditions that might belong to a solution:
¢ We can share security between chains/shards and can use small blocks.
o We can share security without miners keeping and validating all chains/shards.

This is the crux of the problem: how do you construct a network of blockchains
(scalable) such that attacking an individual chain is about as difficult as attacking
the full network (secure), whilst ensuring that the security of the network does not
require validating all chains (decentralized)?

Prior Assumptions Here are some prior underlying assumptions that are either common or
which I expect to be:

e Sharing PoW security requires merged mining.
e Sharing PoW security requires that chains use the same hashing algorithm.

o Multiple (non-merged-mined) PoW chains using the same hashing algorithm means that at
least some of those chains are vulnerable to a 51% attack.

e Simultaneously securing a network with PoW and PoS is not possible without compromises
(like that PoW miners could DoS PoS validators or vice versa).

6 of 155

[git] = 43830880 = 2025-07-22

Aside

Quote

1 INTRODUCTION

o It is unsafe for miners/validators to build on unvalidated histories (as is done with SPV
mining, which is unsafe).

I call them assumptions; some people will likely (and rightly) take issue with that and call
them conclusions instead. For our purposes there isn’t really a difference; I include them
here so that I can later show you conditions under which they are all simultaneously false.

1.1.2 Conjecture: A Principle of Scaling

A scalable system can have components with complexities worse than O(c) if and only if those
components are not bottlenecks, i.e., constraints. As long as there is excess capacity in those
components, the system can still scale.

1.2 Ultra Terminum

Decoupling the underlying consensus from the state-transition has been informally proposed
in private for at least two years—Max Kaye was a proponent of such a strategy during the
very early days of Ethereum.

— Dr. Gavin Wood; Polkadot Whitepaper (2016), s2.2

In essence, Ultra Terminum (UT) is not a method to scale a single blockchain, rather a method to
scale a network of blockchains.

UT differs from existing consensus methods’ in that it is a nowel modification to particular
components of preexisting consensus algorithms. These modifications allow those consensus
algorithms to cooperate. This improves the maximal security and decentralization of the network,
whilst also providing a foundation for scalability.

At the core of Ultra Terminum is a new method for sharing security: Proof of Reflection (Section 2).
This technique (which works in conjunction with PoW, PoS, etc) allows the incremental construction
of complex blockchain networks with powerful scaling properties. Those blockchains use the
technique Proof of Reflection to mutually secure each other, forming something called the simplex
(Section 3.2). Blockchains at this level are called simplez-chains and are able to host dapp-chains
— chains that are dedicated to a dapp, and they can be application specific (e.g., a DEX) or
general (e.g., a chain hosting an instance of the EVM). The vital properties provided by UT allow
heterogenous chains to form a cohesive network and cooperate in securing each other. Proof of
Reflection is how Ultra Terminum (excluding nested chains) scales with order O(c?), and is the basis
for unbounded O(n) scaling. UT’s higher-order scaling configurations, O(c?) and O(c?), require
dapp-chains: chains that are application-specific and which inherit security properties from the
foundational structure. As UT is primarily a method of structuring a blockchain network, the
scalability configurations mentioned herein do not include layer 2 methods. That means that layer
2 techniques (e.g., state/payment channels, ZK/optimistic rollups) can be implemented on top of
UT.

UT’s novel structure means that confirmation times within UT are sub-constant and of order
O(c™1) (i.e., the confirmation rate is O(c)). This means that, as the network grows and c increases,
confirmation times in UT will approach 0. This is an improvement over existing architectures,
which are, ideally and at best, O(1).

Practically, there is little difference between a single blockchain and the simplex to the user. Proof
of Reflection allows each simplex-chain, and each hosted dapp-chain, to do efficient SPV proofs
regarding state-entries on other simplex-chains or dapp-chains. This allows for the creation of

"Whether Ultra Terminum is a consensus method or not is not immediately clear. On the one hand: a new
combination of methods is still a method. On the other hand: UT provides a way to modify other consensus methods
via the fork rule, and UT doesn’t provide a way to run a single blockchain. This is why I introduced it as a cross-chain
consensus strategy.

7 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20240927041732/https://gateway.pinata.cloud/ipfs/QmbH4TzUB7izvuwidG598DNnk3Nmd1aWEyf8KLxeAkrvkK

1.3 Paper Roadmap

rich cross-chain functionality, such as the ability to use a single network-level token across all
simplex-chains and dapp-chains.

Although SPV proofs can be hundreds of bytes long, UT is structured so that their length does
not significantly impact scalability. UT does this by prioritizing a clean and simple protocol for
simplex-chains, and allowing dapp-chains the freedom to implement whatever state- and transaction-
protocols are suitable for the application in question. This means that complex or inefficient
data-structures for a dapp-chain’s state do not impact the network globally, preventing bottlenecks
in foundational components.

Finally, a UT simplex can be modified to enable a tiling of simplexes (Section 6). This technique
removes the upper bound on a UT network’s growth, without sacrificing security of the network.

1.3 Paper Roadmap

The main goals of this paper are to document, explain, discuss, and evaluate UT and its components.
Some secondary goals of this paper are to be simple and clear — this is why the paper is written in
this voice. When I say “we”, I am referring to you and I. This document was written to be read.

Our journey is structured thus:

e Section 2 constructs the main primitive, Proof of Reflection, and covers related topics such as
conversion of work.

o Section 3 uses Proof of Reflection to construct the Simplex, Ultra Terminum (UT), and its
scaling configurations: UT;, UTy and UTsj.

e Section 4 covers the practical considerations for UT: the availability of blocks, state transition,
protocol variants, confirmation times, the PoR graph, block-DAGs, DoS attacks, NIPoPoWs,
simplex security, cross-chain transactions, expedited transactions, and a possible initial
configuration.

e Section 5 analyzes the scalability of UT.

e Section 6 constructs a Tiling of Simplezes and UTy, scaling horizontally with O(n) capacity.
e Section 7 briefly summarizes UT’s resistance to attacks.

e Section 8 concludes by evaluating all UT variants against the Trilemma.

e Section 9 lists the major criticisms of UT with commentary.

The appendices contain comparisons to other networks, details on the iterations of the simulation
(Section 4.10.4), and nonessential protocol analysis.

8 of 155

[git] = 43830880 = 2025-07-22

Aside

Term

2 PROOF OF REFLECTION

2 Proof of Reflection

In this section we will build up to and discuss a new consensus primitive: Proof of Reflection
(PoR). This is a proof that one blockchain’s headers have been confirmed by a second chain. Using
these proofs, we can share security between these two chains, such that attacking either chain is as
difficult as attacking both.

Our starting point is the question: is there anything in principle that prohibits blockchains sharing
security? We already have some examples of this (e.g., merged mining), but those existing methods
require each miner to opt-in and aren’t general. Can we come up with a general way to share
security between chains?

A note on the term “miner”: consensus protocols sometimes choose a new name for the role
of block producer. For example: “validator”, “baker”, “collator”, etc. In this document, the
term “miner” usually refers to the generic role of block producer in an inclusive sense, rather

than specifically to block producers of PoW based-chains.

Our starting point is the idea of one chain ‘tracking’ another chain via its headers — it’s the sort
of thing that would enable a smart contract to do on-chain SPV proof evaluation. This isn’t a new
idea: in 2013, I proposed a system which used this method to support rich cross-chain exchange.® 1
also wrote a simplified implementation of this method for Bitcoin SPV proofs in the very early
days of Ethereum” — a precursor to the later-successful BTC Relay'" (although BTC Relay seems
to have been abandoned in late 2017).

What should we call an on-chain version of a headers-only chain? Since there is no established
term, let’s call it a “projection”, and let’s call the act of one chain creating a projection of another
“imaging”.

Projection: A projection of a chain is its headers-only version that has been recorded
and evaluated by a different chain. For example, BTC Relay is a smart contract by which
Ethereum previously hosted a projection of Bitcoin. The act of one chain creating and
maintaining the projection of another is called imaging.

2.1 A Projection of Bitcoin in Ethereum

It is well understood that an Ethereum smart contract (SC) can image Bitcoin. This results in
a projection of Bitcoin that is available to other Ethereum SCs (e.g., to use as the basis for SPV
proofs). Since Bitcoin’s consensus and PoW algorithm is simple and has low overhead, implementing
the necessary logic as an Ethereum SC is viable. In principle, any chain with a headers-only mode
can be imaged in this way.'!

Let’s assume that a smart contract like this exists on the Ethereum chain and it is operational.

We’re going to use some tables and diagrams as we go to show the sequence of events that occur
and what data is produced and/or recorded. Table 1 shows data and events for both Bitcoin and
Ethereum as Bitcoin blocks are produced and the projection of Bitcoin in Ethereum is maintained.
Figure 3 illustrates this. Note: Figure 3 includes some variance in Ethereum’s block production
rate, similar to what might be observed in a real-world environment, but Table 1 does not.

After a Bitcoin block (BTCy) is produced, a user (it doesn’t matter who) produces a transaction
informing the SC of that block’s header. Then, an Ethereum miner includes that transaction in a
block, which updates the SC. This process repeats when the next Bitcoin block is mined, and so on.

8see https://bitcointalk.org/index.php?topic=198032.0, and https://bitcointalk.org/index.php?topic=598784.0

9https://github.com/XertroV/coppr/blob/master/chainheaders.py [m1]

Ohttps://github.com/ethereum /btcrelay

1 Practically, there can be constraints that prevent this. For example: Ethereum typically doesn’t support memory
hard hashes, so hosting projections of chains like Litecoin on Ethereum is potentially impossible.

9 of 155

[git] = 43830880 = 2025-07-22

https://github.com/ethereum/btcrelay
https://bitcointalk.org/index.php?topic=198032.0
https://bitcointalk.org/index.php?topic=598784.0
https://github.com/XertroV/coppr/blob/master/chainheaders.py
https://web.archive.org/web/20240927044057/https://raw.githubusercontent.com/XertroV/coppr/refs/heads/master/chainheaders.py
https://github.com/ethereum/btcrelay

2.2 Incrementally Implementing Proof of Reflection

Why would a chain want'? to include a projection of another chain? The typical answer is to enable
proofs of some state or that some transactions occurred on the imaged chain. This enables more
complex SCs, e.g., a trustless BTC <+ ETH market.

Table 1: (Hypothetical) Data and events for both Bitcoin and Ethereum as a projection of
Bitcoin in Ethereum is maintained via Bitcoin headers being tracked by an Ethereum SC.

Time step (~15s Bitcoin Eth

increments) block mined block mined Eth block contents Eth state

0 k

1 j BTC}, header Records BTC,....,
40 E+1

41 j+40 BTCg1 header Records BTCy... 41

)...)I—)

|
r
STATE
ETH;
Jt+1 {Headers: BTC[].4.¢+1

ETH, 4

BTC; 42 .
Melyg, heag
er
STATE
ETHj 149 {

48 Blocks

Headers: BTCy...;4+2

33 Blocks

I-).”-)I I

ETH, 51

Figure 3: (Hypothetical) Bitcoin headers, as they are produced, are included in Ethereum’s state
via a smart contract and user made transactions. This is roughly how BTC Relay worked.

2.2 Incrementally Implementing Proof of Reflection

Let’s consider two hypothetical and distinct blockchains — chain L and chain R. To begin with, you
can imagine these as Bitcoin and Ethereum (before migrating to PoS). However, the changes that
are required by Proof of Reflection would require major changes to an existing chain’s consensus
mechanism, so it’s unlikely that changes like these would ever be integrated.

Our starting case for L and R is that both use Nakamoto consensus with the same Proof of Work
algorithm. For simplicity, both chains also have identical block times and we won’t consider block
production variance.

120bviously, blockchains don’t have desires. We’ll personify them as a short-cut, which here means approximately:
the users / community / developers of a blockchain have some common goal or incentive to do a particular thing.

10 of 155

[git] = 43830880 = 2025-07-22

2 PROOF OF REFLECTION

2.2.1 Step 1. Chain R Images Chain L

This is similar to Ethereum imaging Bitcoin — see Figure 4. (We’ll omit the table this time since
it’s basically the same as Table 1.)

Like before, R will include L’s headers as they are produced. Unlike before, let’s assume this is a
protocol-level implementation; so R miners can include L headers directly with no transaction fees.

z 1
mc]ude heg, adey

.+ Headers: LO»~«i+1

z+2
H(’Iu(ie heg, adey
{ STATE
]

I I

j+2 Headers: L(),“i+2

Figure 4: Step 1. Chain R images Chain L; thus Chain R hosts a projection of Chain L.

2.2.2 Step 2. L Images R

Similar to R, L will begin including R headers in each block via appropriate protocol-level changes.
Just as R hosts a projection of L, L now hosts a projection of R. This is shown in Figure 5 and
Table 2.

Table 2: Step 2. Both Chain L and Chain R host a projection of each other.

k+1 R; header Records Ry...;

L block L block R block R block
Time made contents L state made contents R state
0 k R;_1 header Records Ry...j—1
1 J Ly, header Records Lyg...x
2
3

J+1 Lj+1 header Records Lg...4+1

11 of 155

[git] = 43830880 = 2025-07-22

2.2 Incrementally Implementing Proof of Reflection

T
STATE
- . Lits)
eaders: Ro...j10 nely g,
header
R STATE
peader J+1 Headers: Lg...i+1
'md“de
STATE
- , _ Liyo .
eaders: Ro...j11 nelyq,
header
R STATE
peadel J+2 Headers: Lg...i+2
nonde
STATE
. _ Lits
Headers: Ro...j42

Figure 5: Step 2. Chain L and Chain R contain a projection of each other’s headers-only chain.

2.2.3 Step 3. A Reflection of L in R

Can we use a projection of a chain for a different purpose? What happens if Chain L tracks whether
Chain L’s history is confirmed within Chain R? This can be done via merkle branches'® that prove
Chain R’s relevant state. In essence, Chain L uses its projection of Chain R to prove that its own
history matches that of its projection in Chain R. Chain L proves that it is reflected in Chain R.

What does this proof look like? The following progression is shown in Figure 6. First, Chain L must
prove that its history is reflected, so we first find the most recently reflected header, L;; (ideally,
this is the previous L block). Secondly, we want to prove that L;1; is also the best block (for Chain
L) according to Chain R’s projection of Chain L, using the best known R block, R;4,. For that,
we need a merkle branch showing L; 1 is part of Rjy1’s state — this is sometimes referred to (in
this paper) as the missing merkle branch. Thirdly, we want to prove that R;; is the best block
according to Chain L’s projection of Chain R. We can do that via a merkle branch, too, but full
nodes of Chain L already know whether R;; is the best block or not, so this branch doesn’t need
to be explicit. However, L’s nodes must be able to generate it. The full collection of information
required to prove reflection is called a Proof of Reflection (PoR).

Time [Chain L } [Chain R }

|

1>

(a) Find the most recently re-
flected L block.

Time[Chain L } [Chain R }

i+2

i

(b) Prove that block is known
to the most recently reflected R
block.

Time[Chain L } [Chain R }

1

>
=

(c) Prove that R block is known
to the current L block.

Figure 6: Incrementally constructing a proof of reflection (PoR).

Segments of Chain L and R (events and data) are shown in Table 3 and Figure 7.

L3Vector commitments (or verkle branches) can be used, too (this applies to most uses of merkle trees / branches
in this paper). For the sake of convenience and simplicity, verkle trees won’t be explicitly mentioned as an alternative

unless there is a specific purpose.

12 of 155

[git] = 43830880 = 2025-07-22

Aside

2 PROOF OF REFLECTION

Chain L now knows which L blocks are recorded by Chain R, i.e., which local blocks are known
about by some external source. Put another way: Chain L’s history is confirmed not only by new
Chain L blocks, but also by Chain R blocks.

Important: Soon, these confirmations will have real and useful meaning. Under the right
conditions, an appropriate configuration of Proof of Reflection results in an increase in the
rate that confirmations are acquired. This is the first hint of O(¢~!) confirmation time.

At this point, if an attacker was to publish an alternate, better Chain L history, then Chain L
nodes would reorganize around the new history published by the attacker, and the attacker’s block
headers would end up being recorded in Chain R and causing a reorganization there, too. Currently,
this configuration does not add any security to Chain L.

Could we use Chain L’s knowledge that its own history is reflected in Chain R to prevent such an
attack?

Table 3: Step 3. Chain L records which of its headers are known about by Chain R. That is:
Chain L includes proofs of reflection. Note: “Headers” is abbreviated to “Hdrs”.

L block L block R block R block
Time mined contents L state mined contents R state
0 k R;_1 header, Hdrs:
Lk,1 PoR R()...jfl,
PoRs: Lg..p—1
1 J L. header Hdrs: Lg.....
2 k+1 R; header, Hdrs: Ry...;,
L PoR PoRs: Lg...
3 J+1 L1 header Hdrs: Lg...x+1

STATE
Headers: Ro...j40 | Lit1

LT incj
Latest PoR: L;4o Ude heage,
R STATE
I+l Headers: Lg...i4+1
STATE = ade neade’
Headers: Ro...j+1 L; w

i+2

Latest PoR: L;y1 ‘K‘
er
STATE

Headers: Log...i42

STATE = ade \\eade(
Headers: Ro...j12 Li+3 w
Latest PoR: L;yo

Figure 7: Step 3. Chain L includes proofs of reflection (PoRs) along with headers. Proofs of
Reflection allow Chain L to know which of its own blocks are known to Chain R.

13 of 155

[git] = 43830880 = 2025-07-22

Aside

2.2 Incrementally Implementing Proof of Reflection

2.2.4 Step 4. One Way Reflection

Before we discuss a change that Chain L could make, it is important to note that chain-work
done with one hashing algorithm is not generally convertible to ‘equivalent’ work done via another
hashing algorithm. For example, there is no meaningful generic answer to the question how many
double SHA256™ hashes is one Ethash hash worth?

For the purposes of our hypothetical construction, let’s say that L and R do equal work over equal
time. In the current example, that means that the work required to produce either L; or R; is the
same. For the sake of this construction, we’ll also presume this relationship doesn’t change over
time. Our constant of conversion is thus: 1 R Blocks per L Block.

We’re not that concerned with whether this is a reasonable assumption in the real world or
not; right now, we just need a way to convert the work done on each chain into the same
units. Methods for converting work are discussed in Section 2.3.

Currently, the Chain L network chooses the “heaviest” (most worked) chain as its common history.
Chain L calculates the “weight” of blocks (i.e., how much work went in to them) via an estimation
of how many hashes were required — e.g., some number of double SHA256 hashes. For the purposes
of illustration, let’s convert this number to be in terms of L Blocks instead of double SHA256 hashes.
That’s easy, since each block is worth 1 L Block by definition. We can also measure the work of an
L block in terms of R Blocks (1 L-Block = 1 R-Block by the constant of conversion above).

How can the network choose the heaviest chain? Well, a traditional blockchain might use a simple
recursive function like Algorithm 1.

Algorithm 1 Vanilla chain-weight algorithm (typical of traditional blockchains).

procedure CHAINWEIGHT (blocks, state) > The weight of a chain
if length(blocks) == 0 then
return 0
end if

return BLOCKWEIGHT (head(blocks), state) + CHAINWEIGHT (tail(blocks), state)
end procedure

procedure BLOCKWEIGHT(block, state) > The weight of an individual block
return LOCALBLOCKWEIGHT (block, state) > NB: defined by the consensus method
end procedure

Now that we can convert block weights between L blocks and R blocks, could L’s CHAINWEIGHT
algorithm incorporate the idea that Chain R had confirmed part of L’s history? Could Chain L
use this to thwart some types of attack?

Yes, and we must modify the block-weight calculation so that it accounts for work contributed by
Chain R. Algorithm 2 is such an algorithm. Essentially, additional weight is added to a block when
it is the best block known to Chain R, i.e., when, according to Chain R, it is at the tip of Chain L.
Note that this weight is still added if Chain R knows of multiple competing chain-tips.

What is the meaning and impact of this change?

The meaning of this change is that Chain L now incorporates work done on Chain R into Chain
L’s own calculation of the heaviest worked chain.

When a chain does this we say Chain L (or Chain L’s work) is reflected in Chain R. This
technique is what is meant by the term Proof of Reflection.

MBitcoin uses Hash(z) = SHA256(SHA256(x)) as its PoW hash.

14 of 155

[git] = 43830880 = 2025-07-22

Term

2 PROOF OF REFLECTION

Algorithm 2 Modified chain-weight algorithm to factor in reflections.

procedure CHAINWEIGHT (blocks, state) > The weight of a blockchain
if length(blocks) == 0 then
return 0
end if

return BLOCKWEIGHT (head (blocks), state) + CHAINWEIGHT (tail(blocks), state)
end procedure

procedure BLOCKWEIGHT(block, state)
W < LocALBLOCKWEIGHT (block) > Weight due to work done producing block
W, + REFLECTEDBLOCKWEIGHT (block, state) > Weight added via reflection
return W, + W,

end procedure

procedure REFLECTEDBLOCKWEIGHT(L;, state)

w <0 > Sum of weights
Rplocks ¢ REFLECTINGRBLOCKS(state) > Chain R blocks that reflect the local chain
for R; in Rpiocks doO
RCHs < REFLECTEDCHAINHEADS(R;, state) > Local blocks reflected by R;
if L; in RCHs then
w < w + WEIGHTOF(R;, state) > NB: network specific, e.g., Algorithm 3
end if
end for
return w

end procedure

Proof of Reflection (PoR): The consensus technique whereby a blockchain becomes
more difficult to attack by including work done by reflecting blockchains in its fork rule.

One particular impact of this change is that a doublespend attack on L (e.g., withholding a privately
mined chain-segment that reverts a transaction) must now be performed not only against Chain L,
but also and simultaneously against Chain R.

Why? The attacker’s privately mined L blocks are not known about by Chain R. Rather, Chain R
knows about the public Chain L history against which the attack competes. Thus, either:

¢ the private chain-segment must contribute more total work to the Chain L blockchain than
the public chain-segment does (including the relevant Chain R chain-segment); or

o the attacker must additionally produce a private Chain R chain-segment such that the
total work of both private chain-segments is greater than the total work of both public
chain-segments, and publish both chain-segments simultaneously.

Note that, at this point, there is no benefit to Chain R ‘s security. That’s because Chain R isn’t
‘reading’ the reflected work back from Chain L. Thus a doublespend attack against Chain R has
the expected, non-reflected profile — it isn’t more difficult to attack Chain R yet. However, Chain
R can take advantage of the reflection. The main requirements are: the inclusion of appropriate
proofs of reflection that show known Chain R blocks according to Chain L, and an update to
Chain R’s block-weight calculations to account for the reflected work. Proof of Reflection doesn’t
automatically secure both chains; each chain can proactively and independently take advantage of
Proof of Reflection.

Naturally, if there were a large difference in target block frequencies (e.g., 10 minutes vs 15 seconds)
then there would also be a good deal of latency between the points where the higher-frequency
chain gains the security benefit from reflected work. For this reason, Proof of Reflection is most
useful between high frequency chains, or chains of similar frequencies. One downside of this is that

15 of 155

[git] = 43830880 = 2025-07-22

Aside

Aside

2.2 Incrementally Implementing Proof of Reflection

shortening the block production frequency requires the inclusion of more block headers. In the
scheme of things, this can be somewhat significant but it is not a deal-breaker.

Exactly how one chain can properly account for reflected work requires that we cover how to
compare (and convert) that work, and is the topic of Section 2.3.

Note that, as the Chain L tip is gaining reflections from Chain R, miners on Chain L are incented
to include as many novel Chain R headers and PoRs as possible. That’s because each new Chain R
header (with a PoR) will increase the weight of the ancestors of the Chain L draft block, which
helps the draft block compete with other draft L blocks. This increases the overall chain-weight
that the miner is building on, and thus contributes to their block becoming part of the most-worked
chain.

Where do Chain L miners get PoRs from? There are multiple answers, but one is for miners
of Chain L to request them from Chain R nodes — light-client protocols often support this
sort of thing. The problem is discussed in Section 4. For now, it’s okay to assume that PoRs
are broadcast alongside headers.

There are still potential attacks on Chain L. For example: what if an attacker mines a doublespend
in private and produces a longer chain-segment than the honest chain? That is, the attacker’s
segment — excluding reflections — is heavier than the honest chain-segment. At this point the
attacker can publish their blocks even though the honest chain-segment — including reflections
— is heavier. Chain L nodes would not reorganize around this new chain-segment, so why would
an attacker do this? If the projection of Chain L in Chain R does not account for reflections,
then the attacker’s chain-segment will appear (to Chain R) to have more work than the honest
chain-segment. Thus the projection of L in R will reorganize to favor the attacker’s chain-segment.
If the attacker has more hash power than the honest miners (i.e., ¢ > p'°) then they might'® be
able to use this reorganization as a foothold — either to launch a traditional 51% attack against L,
or to attack SPV verification and light clients.

Note: Chain R is not required to actually evaluate Chain L’s tip. PoR can still work if Chain
R simply records every Chain L header that it can, and nothing more. However, this increases
the complexity of a PoR implementation, and Chain R users won’t have protocol-level access
to a projection of L. Since a correctly-evaluated projection of L is useful (for users of either
chain), we should solve this problem if we can.

How can we prevent this kind of attack? The attack is only possible because Chain R was not
accounting for reflected weight — if Chain R’s projection of Chain L accounts for reflections, then
this attack is not possible. If Chain R users were required to run full nodes for both L and R, then
we’ve essentially just combined L and R into one big, overly-complex blockchain — this change
would thwart the attack, but it isn’t a solution. Instead, we need to ensure that Chain R can
cheaply and reliably evaluate the weight of L’s reflections.

Let’s add a field to L’s header: the total chain-weight,'” including reflections, of that block. If
this value is always reliable, then it’s trivial to correctly construct L’s headers-only chain. With
traditional blockchains (like Bitcoin) it’s easy to verify the weight of a header, and thus a headers-
only chain, because the header’s difficulty is already available as part of the PoW’s payload. In this
case, though, additional data is required — specifically, the proofs of reflection. Full nodes of Chain
L already verify that the claimed chain-weight is accurate — all the required data is contained in L

151n Satoshi’s Bitcoin: A Peer-to-Peer Electronic Cash System the parameters p and ¢ represent the probability
that the next block will be found by an honest node or the attacker, respectively. This convention has been continued
in subsequent analysis, e.g., Rosenfeld’s Analysis of hashrate-based double-spending (Meni Rosenfeld; 2012), and is
continued here, also.

161n a limited case like this, where there are only two chains, there are many options for preventing these sorts of
attacks on full nodes. However, in a more general case, where there might be many reflecting chains, we need to deal
with the root cause of the vulnerability.

nstead of the total chain-weight, the sum of reflected weight works too (these are essentially equivalent).

16 of 155

[git] = 43830880 = 2025-07-22

https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv

Aside

2 PROOF OF REFLECTION

blocks — but this doesn’t help light clients. We need additional protocol changes to ensure that
the claimed chain-weight of a header is always reliable.

One solution is to adopt a design that allows R nodes to independently calculate or verify
L’s reflections without evaluating L’s state. Provided that R nodes can calculate any missing
merkle branches on demand, this will work. This method has substantial advantages, however,
some configurations have considerable overhead. It is discussed in Section 4.3 and Section 4.4,
and analyzed in Section 5.8.

We can, at least, guarantee that a fraud proof will always be possible when a malicious L block
lies about its total chain-weight. Additionally, other L miners can detect the lie and link back to
the malicious block as an invalid parent alongside the fraud proof. These are useful features, but
they’re overkill at this point.

For now, let’s assume that R records L headers and the corresponding PoRs, and that R nodes
verify L headers’ chain weights.

2.2.5 Step 5. Mutual Reflection

The final step in this progression is mutual reflection — where both chains image one-another and
include the necessary PoRs and modifications to their chain-weight algorithms. This is shown in

Figure 8.

STATE i
Headers: Ro...j40 p| Lit1

Latest PoR: L; 1o

STATE
Rj4q | Headers: Lo...it1

Latest PoR: Rj1o

STATE
Headers: Rp...j11 Li+2

Latest PoR: L;41

STATE
42 Headers: LO---i+2

Latest PoR: Rjt1

STATE
Headers: Ro...j42 »| Lt

Latest PoR: L; 4o

AT

STATE
Rji3 |{ Headers: Lo...it3

Latest PoR: Rj 2

Figure 8: Step 5. Proof of Reflection between two UT Chains, Chain L and Chain R

When two chains (Chain L and Chain R) mutually reflect each other, detecting attacks becomes
easier. The security of both Chain L and R are partially dependent on each others’ histories (along
with their own, of course). If one chain is attacked, where some alternate chain-segment is published,
then that chain’s nodes will know that those blocks have not been reflected — potentially indicating
that the recently-published chain-segment was constructed in private or constructed after the fact.

There are several details that still require discussion, though, such as: how exactly is weight
contributed by a reflecting chain converted to weight in the local chain? (discussed in Section 2.3);
and how can proofs of reflection be calculated without the requirement that miners are full nodes
of both chains? (discussed in Section 4). This last question is particularly important for moving

beyond mutual reflection between only two chains.
17 of 155

[git] = 43830880 = 2025-07-22

Aside

2.3 Comparing Incomparable Proofs of Work

The essence of Proof of Reflection should now be apparent. In principle, we can make blockchains
more difficult to attack based on the idea that blockchains can include a projection of the history
of other blockchains (and confirm a chain’s history like they do transactions). In principle, it is
possible to increase the security of a blockchain via reflection and to increase the security of multiple
blockchains via mutual reflection.

Remarks Typically, it is insecure for a weaker PoW blockchain to use the same hashing algorithm
as a more popular, more heavily mined PoW blockchain. In such a situation, a small proportion of
miners on the more popular chain could temporarily divert efforts to perform a doublespend or
empty block DoS on the other chain, and thus the weaker chain is plainly insecure. However, if
those two chains were using mutual PoR, then this kind of attack becomes impossible, and we’ve
found a way for two PoW chains to coexist using the same PoW algorithm.

2.3 Comparing Incomparable Proofs of Work

For Proof of Reflection to work, we must alter the fork rule (which compares the chain-weight of
two candidate best-blocks). We sum block-weights to get the chain-weight. PoW chains use the
expected number of hashes to produce a block as the measure of work.'® So, for mutually reflecting
PoW chains, we need a way to compare and convert hashes done on R to hashes done on L (and
vice versa).

If we are to convert work between PoW chains, then we must be able to convert between L-hashes
and R-hashes in a consistent way. Consistency, here, means the conversion shouldn’t change the
outcome of the fork rule; if the fork rule says L;...j o > Lj...; 5 in terms of L-hashes, then it should
give the same result for all cases when the units are changed to R-hashes.

Since both weight and hashes can be summed, an easy way for this to work is for us to use a linear
conversion method (i.e., the units are proportional, we have some constant of conversion for that
specific situation, and all units share an origin). In effect, for any two values, the ratio between
linearly converted values is constant provided those values are in same units, but independent of
which units those values are represented in. This doesn’t imply that all possible mid-states are
linearly convertible, though. However, if some mid-states are linearly convertible (to and from
hashes), then the fork rule should work for those units, too.

When it comes to comparing work, we’ll need to work with particular factors (or properties) that are
intrinsic to all blockchains (though the particular values vary by chain). These are the factors which
naturally come as rates, even though they’re often measured in absolutes. For example: instead of
measuring work in raw hashes, we’ll use hashes per block; instead of measuring block rewards, we’ll
measure coins per block and the inflation rate. Even though the act of block production is discrete,
blockchains have a block target time; a way of keeping things consistent over time (at least in the
short term). Since a block represents a discrete amount of work, and has a known, measurable
target time, we can sometimes unify the two via the idea of rate of work, e.g., hashes per second.
Making these sorts of conversions up-front (where appropriate) will simplify the work to come,
since we’ll be working with ratios of units which naturally allow for useful conversion.

When we can measure the rate of work in some direct way (e.g., number of hashes per block),
we can also scale block rewards according to both the network difficulty and the demonstrated
rate of work. This enables dynamic block production (i.e., blocks with a flexible minimum
difficulty). This would (probably) be disruptive to a traditional blockchain, due to many stale
blocks. For UT, it becomes relevant with Section 4.8, and particularly with Section 4.8.3. UT
does not require support for dynamic block production, but it’s useful to have as a technique
in reserve (perhaps particularly for Section 3.4).

Here’s the problem: universal and generic conversion between qualitatively different units is

18 Alternatively, something that’s linearly convertible to number-of-hashes (like difficulty) can be used instead.

18 of 155

[git] = 43830880 = 2025-07-22

Aside

2 PROOF OF REFLECTION

impossible.'? We need a specific goal and context to successfully convert — in fact, the goal is what
enables us to judge whether it’s a successful method of conversion or not.

We only know one specific thing at the moment: our goal is to convert chain-work so that PoR
works. The conversion shouldn’t introduce any vulnerabilities, and it should work within the
constraints that we’ve discussed up to this point.

In order to discuss conversion methods we need to know the context within which the conversion
happens. We already know some background context, like that we’re using blockchains, that root
tokens (which are exact and fungible) are involved via block rewards, that nodes have access to
certain information via some proof or because it’s already in their state, etc. This background
context isn’t enough, though. What specific contexts can facilitate conversion? This section has
two examples — Section 2.4.1 and Section 2.4.2.

Before we discuss the examples themselves, let’s discuss some intermediate conversions that we’ll
use in those two examples.

2.3.1 Theoretical Conversion

Consider a traditional blockchain (like Bitcoin, or Ethl). We know that traditional blockchains
have properties specific to their blocks, like: reward per block (coins/block); a block target time
(seconds/block) — or block frequency (blocks/second); and a difficulty (hashes/block). There
are also network-wide properties, too, like the inflation rate (coins/second). The instantaneous
relationship between these properties is mediated by various protocols — these protocols (e.g.,
difficulty adjustment algorithms) are part of the context of those properties and relationships. How
can we use these relationships to our advantage?

With regards to Proof of Reflection, consider that we only need to convert simultaneous
work. That means: PoR does not need to be able to convert chain-work between chains over
time, only for some given moment.®

%At this point, we are discussing how PoR works with Proof of Work, discussions of where other methods,
such as Proof of Stake, fit into the ecosystem will be discussed in Section 2.5.

The units that we have to work with are: blocks, seconds, hashes, and coins?’. There are actually

multiple types of blocks (L-blocks and R-blocks), coins (L-coins and R-coins), and hashes (L-hashes
and R-hashes). We can’t combine those unless we’re able to convert those values to common units.

If we ignore some of the normal constraints on consensus algorithms — like where information
comes from — what information could help us convert? If we had an exchange rate between L-coins
and R-coins, then we can trivially convert between them. If we have that, then, for our current
purpose, we can treat L-coins and R-coins as interchangeable units — because we can always
convert between them. So now we have L-blocks, R-blocks, coins, and L-hashes and R-hashes.

Let’s consider Chain L, and give some of these properties variables: Ly (L-blocks/s) for block
frequency, L, (L-coins/L-block) for the block reward, and Ly (L-hashes/L-block) — the difficulty.
We can multiply combinations of these to get new units: L - Lq gives us L-hashes/s; Ly - L, gives
L-coins/s, and L4/L, gives us L-hashes/L-coin.

Now, let’s add that exchange rate: Xpr_,;, (L-coins/R-coin). Let’s also add variables for Chain
R, Ry, R,, and R4, which correspond to those we already have for Chain L. There’s a symmetry
between chains L and R, so we already know that R4/R, gives us R-hashes/R-coin.

In theory, can an exchange rate help us convert between R-hashes/R-coin and L-hashes/L-coin?

19 Attribution: I learned this, its significance for epistemology, and the importance of goals and context when
evaluating ideas, from the philosopher Elliot Temple — particularly via his Critical Fallibilism Course (Elliot Temple;
2020) (which is difficult to cite directly). His article Multi-Factor Decision Making Math (Elliot Temple; 2021) details
many related concepts and is a good starting point.

20Note that the terms coin and root token are synonymous. The choice of coin over root token, for these sections,
is for practicality — we’ll see this term a lot.

19 of 155

[git] = 43830880 = 2025-07-22

https://curi.gumroad.com/l/mhtbA
https://curi.gumroad.com/l/mhtbA
https://criticalfallibilism.com/multi-factor-decision-making-math

Aside

Term

2.3 Comparing Incomparable Proofs of Work

2.3.2 Converting Block-Weights

Can we find some function, ConvWorkg_, 1,(w), that converts R-hashes to L-hashes?

Lq L-hashes
L, L-coin
L L-hash
— 2. Xp,y ﬂ Multiply by Xr_1
L, R-coin
Lg R, L-hashes ..
- X - — - Divide by Rd/R,. 1
— L, “fL R, R-hash ivide by fa/r (1)
Ld R'r
.. ConvWorkg_, 1. (w) = 7 Xpoop RV R-hashes — L-hashes (2)
r d

With Equation 1, we have just found our first constant of conversion for block-weight.

Equation 1 has a natural symmetry. It’s worth noting for later.

What’s going on here? We start out by observing La/L, gives us a value in units of lashes Thjg
is a constant of conversion from L-coins to L-hashes for a given moment — if some miner earned
x L-coins today, then x - L4/L, would tell you roughly how many hashes were done to earn that
reward. Next, we multiply by the exchange rate to find the constant of conversion for %
Then, we divide by R4/R, to find the constant of conversion for LRh}?Z}S‘ﬁS If we multiply this constant
of conversion by a value of R-hashes, then we’ll end up with a value of L-hashes. It tells us the
relative weight contributed to each network by each hash performed. Finally, we can deduce the

function ConvWorkp_,1,(w) which takes a value of R-hashes and returns a value of L-hashes.

Let’s sanity check this.

Root Token (RT): aka Coin. The typically sole network-level token required by blockchain
protocols. e.g., Bitcoin has BTC, Ethereum has ETH, Polkadot has DOT, Cardano has
ADA, Amaroo has ROO, etc.

Consider two blockchains (L and R) that are very similar to Bitcoin. Unless otherwise specified,
the chains are identical. Here are the key assumptions:

e Both L and R started on the same day, with the same block rewards (in their respective root
tokens), block frequencies, and inflation schedules.

e L and R have equal money supplies, and the exchange rate has been stable at Xp_,;, = 3
L-coins/R-coin.

o L and R use different PoW algorithms, L uses something like Serypt (similar to Litecoin) and
R uses something like SHA256 (similar to Bitcoin).

e ASIC/FPGA mining doesn’t exist yet, but GPU mining does.

e (In this thought experiment) the best GPUs for mining Scrypt and SHA256 are of the same
brand and model — i.e. the same supply is responsible for the hardware of all miners,
regardless of which chain they mine.

o There’s no comparative advantage between GPU makes/models — i.e., a miner can’t increase
their revenue by cleverly organizing which GPUs mine which networks.

e The cost of running both L and R nodes is negligible.

e L and R have perfect difficulty adjustment algorithms.

o The miner(s) used in this thought experiment are small relative to the total population of
miners — their choices don’t meaningfully impact network hash-rates or difficulty adjustments.

What should we expect regarding the conversion of work? To start with, let’s note that GPU
miners could work on either chain — good hardware for one chain is good hardware for the other,
too. We know that L and R’s block rewards (in root tokens) and block frequencies are the same

20 of 155

[git] = 43830880 = 2025-07-22

2 PROOF OF REFLECTION

— so the exchange rate is going to play a dominant role in Rol (since the only other difference is
difficulty and hash-rate). If a miner could break even by making 30 L-coins, then they could also
break even by making 10 R-coins. They’d need to make 3x as many L-coins as R-coins — that’s
the exchange rate. If L and R used the same hashing algorithm, then we could compare difficulties
to see if this makes sense — does that miner make 3x as many L-blocks as they would R-blocks?

In this case, though, the difficulties are set for different hashing algorithms — so how many hashes
can GPUs do for each hash? Say a GPU can do 7 SHA256 hashes for each 1 Scrypt hash. A miner
that can do h Scrypt hashes/day should be able to do 7h SHA256 hashes/day. That same miner
should be able to make h - Ir/L, coins per day — L’s coins per block, divided by L’s difficulty
(hashes per block) gives us a constant of conversion with units L-coins/L-hash. Of course, the miner
could, instead, mine on R, thus making 7h - B+/R, coins per day. How do we know which is better?
We use the exchange rate, of course!

If miners could swap from their current chain to the other chain and increase their revenue, then
we should expect some to do that. In turn, we expect each chain’s difficulty to change, reflecting
that change in participation. If some miners (on the whole) moved from L to R, then we’d expect
L’s difficulty to decrease and R’s difficulty to increase, corresponding to how many miners moved.
Since this is an arbitrage opportunity (for miners), we expect that any profitability gap will quickly
be closed. Thus, we can say that a miner’s revenue is equal regardless of which chain they’re mining:
Revenue; = Revenuer when measured in the same units.

L,
Revenuer, = h - I L-coins Revenue on L (3)
d
R, . . .
Revenuegr = 7h - o Xroo L-coins Revenue on R in L-coins (4)
d
Revenue;, = Revenueg L-coins The equality we set above
L, R, . . .
S he—=7Th- — - Xp_p L-coins Equation 3 and Equation 4
Ly Ry
L, R, L-coins .
—=7-—-X Divide by h
La Ry Tk L-hash ice by
Ry R, R-hashes - L-blocks . Ry
RN, SN '€ Multipl —
Lo L, NEor L-hash - R-block ultiply by 7~
Ry R-hashes - L-blocks
— . X L
L, 73 L-hash - R-block Sub Xp—, Ry, and Ly ®)
R-hashes
=21L _— Multiply by L
Ry d Roblock ultiply by Lq (6)

So, the ratio of difficulties should be 21%; or, R’s difficulty value should be 21x L’s
difficulty value.

Why did the substitution of X1, R, and L, (Equation 5) equal 3, though? First, notice that
the units did not change with that operation. Next, we know the exchange rate Xr_,; = 3; we said
so earlier. So it must be that &-/r, = 1. This simplifying step is only possible because we began
calculating numerical values. We said earlier that L and R have — numerically — identical block
rewards, so it must be that RB-/r, =1 in this case.

Let’s consider Equation 2 in light of the above.

L R,
ConvWorkg_, 1. (w) = L—d - Xpor 7w R-hashes — L-hashes Equation 2
r d
1 R, .
=5 I - Xp_p-w L-hashes Sub La/r, from Equation 5

21 of 155

[git] = 43830880 = 2025-07-22

Aside

2.3 Comparing Incomparable Proofs of Work

L-hashes Sub % - Xr_ 1 as before

We said this was true earlier — 1 L-hash is worth 7 R-hashes. Thus far, we have not yet found an
inconsistency (i.e., we don’t yet have a reason to think this won’t work).

There is, however, an inconsistency lurking. Consider:

& X L-blocks

L, Rtk R-block

ﬁ L-blocks

Ry R-block

Ly R, L-blocks
But! —— £ —. X _— 7
" R, 7 I, Krot R-block @

These two values are not equal (or comparable), and nothing we’ve said implies that they should be!
There are qualitative differences between the two that is not represented in the current units. On
the one hand, we have something like relative block frequencies, and on the other we have something
like a ratio of the weight or value of block creation. But they have the same units! What’s going
on? How do we know whether a constant of conversion works for our purposes?

2.3.3 Hold Up! We Need to Talk About Ls/r; and B+/r, - Xp_,1,

This section regards some subtle ideas about when conversions work (i.e., give meaningful
results), and when conversions don’t. It’s worth spending some time on these ideas because
when and how you can convert is not always obvious. But, we must understand this to
construct a meaningful method of converting block-weight — which PoR, requires.

Let’s consider some units with real-world interpretations. What can L-blocks/R-block mean?

o Relative block frequencies or relative confirmation rates — This has real-world meaning: Ethl
produces approximately 40 Ethereum-blocks in the same period (measured in seconds) that
Bitcoin produces 1 Bitcoin-block.

e Relative block weights — This has real-world meaning: how much harder is it to generate a
block on one network vs another network?

e Relative confirmations — This has real-world meaning: how many confirmations does one
network take, compared to another, to reach equivalent security??!

Intuitively, relative block weights and relative confirmations sound related. If blocks on L are 5x
heavier than blocks on R, then we’d have a constant of conversion of /5 L-blocks/R-block; and a
chain of 5 R-blocks would be roughly as hard to create as a chain of 1 L-block. So 1/5 seems like a
reasonable estimate for relative confirmations, t00.?>

Naively, relative block frequencies seems to be in the same units as the other two: L-blocks/R-blocks;
but they cannot be in the same units as the values mean different things. Let’s consider relative
confirmation rates particularly. What happens if we assume that seconds on each chain aren’t the

2l«Bquivalent security” means that a doublespend attempt on one network is just as risky, costly, etc, as a
doublespend attempt on the other network. To do this comparison, we start by picking some ¢ for the attacker on
L, a transaction value (in L-coins), L’s block reward, and then find the boundary of attack-viability (measured in
L-confirmations). The boundary of attack-viability is where rules of thumb around confirmation times come from,
e.g., for Bitcoin, a transaction is safe after 6 confirmations. Next, we consider an equivalently valuable transaction
on R (converting via the exchange rate), and an equivalent attacker (using Equation 2 to convert). How many
confirmations are needed on R so that Py (attack success) = Pr(attack success)?

22Due to the dynamics of confirmations, we can’t directly compare chain-segments like this, generally speaking
— this example is here to help give you an intuition. The reason we can’t directly compare in this way is that
simply having more confirmations is worth something in and of itself. The relationship is not linear. See Analysis of
hashrate-based double-spending (Meni Rosenfeld; 2012) for more.

22 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv
https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv

Term

2 PROOF OF REFLECTION

same thing, i.e., the units of confirmation rate are L-blocks/L-second (or R-blocks/R-second)?**
Crucially, we can not cancel the seconds anymore:
Ly L-blocks - R-seconds

? —
" Ry L-second - R-block

Relative confirmation rates (8)

1
R, L-blocks R-coins - L-ceins™) .)
?7=—.X . lative block ht X
L, R=L R-block _I=coins - R-coins Relative block weights via X1 (9)

We can see that Equation 8 and Equation 9 are now obviously not comparable.

The reason that Ls/r; did not make sense before is that we were not including all necessary context!
There is ¢mplicit context in some properties of blockchains — participation. Values like Ls/rR; —
when used to measure the target block frequency — do not factor in participation; the target block
time is usually a constant, so it can hold no network-specific contet.

Where does this network-specific context come from? How is it separated from “world” context
— like target block frequencies? How is the network-specific context maintained over time? The
answer to all three questions is the same: the Difficulty Adjustment Algorithm (DAA).

Difficulty Adjustment Algorithm (DAA): An algorithm which updates its chain’s
difficulty as valid blocks are produced. The output of a DAA is context laden — units take
on additional context.

DAA’s typically work like this: calculate a ratio by which to adjust (multiply) the prior difficulty,
based on a target block production rate and the measured block production rate.

Bitcoin, for example, adjusts its difficulty every 2016 blocks.”* A ratio is found by multiplying the
previous difficulty (Dprev) by the target duration (Atgarget) for 2016 blocks and dividing by the actual
duration (Atactual) of the last 2016 blocks.?” Note that the units of At,ctual are B-seconds/(2016
B-blocks), and the units of Atyarge; are seconds/(2016 blocks).

DAA’s are special: they are the means by which context is added. DAA’s don’t explicitly deal
with this context though — it’s not mentioned in the algorithm itself. The key to a DAA’s success
is that it operates relative to a past state that is already context laden. So DAA’s don’t need to
have any special awareness of context, just that multiplying the past difficulty by a particular ratio
will adjust the confirmation rate to align with the target block frequency. It’s an incremental and
ongoing process. Since DAA’s don’t have initial conditions, there’s no bootstrapping concern. To
function, a DAA only needs to say how the difficulty should change; it doesn’t need to know what
it actually ¢s. We will use the subscript W — B to denote the idea of converting between some
world context, and the network context (of Bitcoin).

Atarget B-blocks - seconds
Atactual B-second - block

Note that: ConversionConsty g =

1
B-hashes - seconds B—blg;k{

. Attargct .
B-second - block _BZblock

Bitcoin’s DAA: NextWorky _, g(Dprev) = At
actual

: Dprev

When a DAA adds context, it converts blocks <+ B-blocks, and seconds <> B-seconds. Alternatively,
it could strip context. Either way works because the DAA acts as a boundary of the convertible
context in both cases. This means that when converting we can cancel B-seconds with seconds,
B-blocks with blocks, etc.

_ Attarget B-hashes
T Atactual prev B-block

23 Alternatively, you could assume that confirmation rates are always in the same units (i-e., generic blocks/second).
That will yield similar results; the logic basically works either way with some minor tweaks. The important point is
that the units of Lr/R; are not L-blocks/R-block.

24Note: in Bitcoin, a difficulty of 1 corresponds to 232 hashes.

25Note: in practice the ratio is clamped between 1/4 and 4. See Bitcoin’s src/pow.cpp for the implementation.

Alt. with context: NextWorkw — g (Dprev) (10)

23 of 155

[git] = 43830880 = 2025-07-22

https://github.com/bitcoin/bitcoin/blob/7fcf53f7b4524572d1d0c9a5fdc388e87eb02416/src/pow.cpp#L49-L72

Term

Aside

2.3 Comparing Incomparable Proofs of Work

1

At arge B-hashes - B-
Divide by Dprey — ConversionConsty _,g = ﬁ /B{?Zﬁfﬁl{)ﬁi@'

Convertible Context: The boundary of a group of values that are mutually convertible.
Within a convertible context, all values must be of the same scale or have known exact
scaling factors.

The general case of a DAA’s relationships (flows of information and context) are diagrammed in
Figure 9.

How do we know that both blocks and seconds become context laden via a DAA, though? Let’s
consider what Ls/Rr; means for the possible combinations of context laden values and note whether
the meaning works for conversion or not (i.e., whether using it appropriately as a constant of
conversion, or scaling factor, will produce sensible results).

L
No context: R—f (unitless) works (11)
f
L L-block
Context laden blocks: R—; Wooccks fails (12)
L R- d
Context laden seconds: et & —ECCOnTs fails (13)
Ry L-second
Ly L-blocks - R-seconds
Both context laden: — ? 14
v context fadel Ry L-second - R-block (14)

We’ve seen Equation 11 and Equation 12 before. The first represents the ratio of block frequencies
(unitless) — that’s straightforward and works. The second has units L-blocks/R-block, which
sounds like it should be the ratio of block weights — but it’s clear that it isn’t that. (So this
conversion method fails.)

Equation 13 has weird units, though. R-seconds/L-second means something like: the relative
participation of each network compared with a recent past state; i.e., the ratio of the ratios of
each network’s actual block production compared to its target block production. (This conversion
method also fails.)

Equation 14 measures something like relative weighted confirmation rates. It’s not clear if is useful
or not, but we do know that no other value we have access to has context laden seconds as a
unit. How can we use it to convert between anything meaningful if context laden seconds can’t be
canceled via some conversion? (Do we even need to ever use those units, anyway?)

In general, it seems like the safe option is not to use Ly or Ry when converting work — unless we
have some specific, context-driven explanation for why it’s okay in that case.

How do these ideas of context laden values work when converting values between these network-
contexts? This is diagrammed in Figure 10.

In essence, an exchange rate provides meaningful conversion between L-coins and R-coins. Converting
in this way does not drop context. Since network context is respected, we can use an exchange rate
to build a meaningful constant of conversion across networks.

With regard to DA As, it should be noted that Bitcoin’s was the first, and the method has
some undesirable properties. I quite like the algorithm named DAA-2 (which is used by
Bitcoin Cash) in An Economic Analysis of Difficulty Adjustment Algorithms in Proof-of-Work
Blockchain Systems (Noda, Okumura, Hashimoto; 2020). Experimentally, it seems to work
well with Section 4.8.

24 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8
https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8

2 PROOF OF REFLECTION

Chain History Confirmation rate

<
(N-blocks/N-second) N-network context feedback (N-blocks /N-second)
1Y
N
N

N
Miner Revenue

Target Block Freq. %ﬂ — Difficulty Adjustment Algorithm —]

S
|
|
|
|
|
|
|
|

(blocks/second) (N-coins/N-block)
A
o \ VA
Previous difficulty implicit N-network context Difficulty
(N-hashes/N-block) ~ T > (N-hashes/N-block)

Figure 9: The difficulty adjustment algorithm governs the relationship between the inputs: the
previous difficulty, the target block frequency, and network participation (chain history); and the
output: the network difficulty. The DAA is how confirmations and coins become laden with
implicit context. If we don’t account for this implicit context then our conversions will be nonsensical.
The implicit context is network participation — thus, N- prefixes the units which are context laden.
Thick arrows indicate network contert, and thin arrows indicate world context. Solid arrows show
the flow of information. Dashed arrows show the flow of context. Two-way arrows (+—) link two
values that are convertible. The collection of values mutually linked by two-way arrows define the
convertible context. Values can only be converted when there is a direct two-way path between
them.

Chain History e e Confirmation rate
(L-blocks/L-second) L-network context feedback (L-blocks/L-second)
/"\ §%§§
Target Block Freq. . . . i Miner Revenue
(blocks /second) Em— [— Difficulty Adjustment Algorithm —] I (L-coins /L-block)
ﬂ\\ / \ \ﬂ/ lzé&? /’\T\\
| Previous difficulty implicit L-network context Difficulty \\\\\\
. L-hashes/L-block) ~— T TTTTTTTTTT 4 L-hashes/L-block \
21
E’ | N =h
= I =
A= all 8
Sz =g, T
8 ' ® e g4
‘ - g1s
@ : \'d 5? I
& ! Previous difficulty N Difficulty =)
} (R-hashes/R-block) implicit R-network context (R-hashes/R-block) /

N ‘§% /4
/
/ i N v

i i
%H — Difficulty Adjustment Algorithm — } I Miner Revenue

\'4
Target Block Freq.

(blocks/second) I (R~coins/R-block)
I A
Voo
Chain History R-network context feedback Confirmation rate
(R-blocks/R-second) e (R-blocks/R-second)

Figure 10: How are the convertible contexts of two different networks related? Without the market
context, there’s no conversion path that allows for the conversion of work — the conversion path
between difficulties is a consequence of Xr_,1, (the exchange rate). This is the same convertible
context that miners use to determine which network is most profitable for them. Double-lined
arrows indicate market context. Thin single-lined dashed arrows indicate world context. Notice that
the convertible properties which we are interested in (such as Ly and R,) use thick, double-lined,
and dashed two-way arrows, indicating that we are using network context and market context to
convert block-weight.

25 of 155

[git] = 43830880 = 2025-07-22

Aside

2.4 Conversion Contexts

2.3.4 Conversions and Sums

We know that, after conversion, we can sum work from two different chains. Are there any other
values (in units other than L-hashes) that we can sum up, though? When we’re summing weights
as part of calculating chain-weight (e.g., that of Algorithm 2, or Algorithm 6), do we need to sum
L-hashes? Well, no. We only need to end up with L-hashes.

Consider the case for a two-stage linear conversion method. That is: we convert the input into
some common units (which could be anything), then we convert those common units into the final
units. If both partial-conversions are linear, then we must have a situation like this:

Convertr_, g(...) = Convy(Convs(...))

=V; - Convaf(...) For some constant of conversion, V;

Let’s sum multiple conversions, e.g., as done in Algorithm 2:

n n
Z Converty ,g(...) = Z V1 - Convy(...)
i=0 i=0
n
=V - Z Convy(...) Factorize out V;
i=0
Thus, any common units, which are linearly convertible both from a reflecting chain’s block and to

local chain-work, can be used during summation.

Before we move on, let’s consider:

E X L-hashes
L, R=L R-coin
R, L-coins
— - X imilarl
Ry R—L Rohash Similarly
R, .
. ConvRewardp . (w) = — - Xpp - w R-hashes — L-coins (15)

Ry

Is it possible that we can convert chain-work via summing block rewards?

2.4 Conversion Contexts
What blockchain contexts can facilitate the conversion of block-weight?

Whatever contexts we find, we will need to figure out a way to get the exchange rate that is at least
as secure as the consensus algorithms (otherwise we’d be introducing a new weakest-link). That
can’t be too hard, right?

Can we avoid that exchange rate, though? Well, there is a context where Xp_,; = 1: when
L-coins = R-coins, i.e., both chains use the same root token. In that case, La/L, - B-/R, gives us
L-hashes/R-hash directly.

2.4.1 A Single Root Token Across Multiple Chains

The first example context is one network split over two chains. Both chains use the same root token.
There are, naturally, questions to answer, like How are block rewards managed? and How can the
root token be on two blockchains at once?

Let’s consider the following restricted case first: the chains (L and R) have something like a two-way

peg between them, ensuring that no coins are ever incorrectly created or destroyed.

26 of 155

[git] = 43830880 = 2025-07-22

Aside

2 PROOF OF REFLECTION

In this case, for a single R-block, Equation 2 collapses to:

Ly R,
ConvWorkp_, 1, (w) = 24 Since Xp_p =1
L, Ry
Lq
= ConvWorkg_,1(Rq) = T R, L-hashes w = (Rg4-1) R-hashes (16)
L, . x L-coins/L-hashes
= ConvWork Ry)-— =R, L-
onvWorkp-. 1 (fa) Lg coms Weight of an R-block in L-coins

So, the weight of an R-block measured in L-coins is exactly equal to the R chain’s block reward.
This, of course, makes sense. L-coins are fungible with R-coins in this context, so, naturally, the
weight-in-coins of an R block is its own block reward.

If we convert like this (treating 1 R-block as worth R, -1 L-coins) then we’ll we need to convert the
result to L-hashes eventually, but, if we have multiple reflections to process, we can calculate interim
values (with units of L-coins) and sum them before that final conversion. It’s worth remembering
that block-weight is measured per block. Since we’re only converting with respect to a single block
at any one time, the per block part of the resulting units cancels out — e.g., Equation 16.

Let’s use this context to write our first WEIGHTOF function: Algorithm 3 (we’ll still return work

in L-hashes, though, not L-coins).

Note: the algorithms we define here will be general — they’ll work for both the local and any
reflecting chains.

Algorithm 3 A WEIGHTOF for networks of a single root token.

procedure WEIGHTOF(B;, state) > The weight of a reflecting block in L-hashes
t < BLOCKTIMESTAMP(B;)
R + CHAINOF(B;, state) > Either the local or a reflecting chain
R, + BLOCKREWARDOFAT(R, t, state) > L-coins/R-block — by definition

L4 < LOCALDIFFICULTYAT(t, state)

L, + LOCALBLOCKREWARDAT(?, state)

return R, - (Lg+ L,) > See Equation 16 (Note: Ry cancels out)
end procedure

But where do we get the reflecting chain’s block reward? To start with, we can’t let each chain set
its own reward, that would break the two-way peg. It also means the reflecting chain shouldn’t be
the source of that data. We could retrieve it from state (if it’s already calculated), but for the sake
of this example, let’s calculate it in the WEIGHTOF function.

Right now, we don’t have enough context to know what to do; what contexts would be useful?

What purpose does a block reward fulfil? It must be something about security, because that’s why
miners are given an incentive to mine (the how is via the block reward). If we have multiple chains
(with the same root token), why should one chain be more secure than another? One reason is
because more commerce happens there; i.e., more of the network relies on that chain compared to
the other one.

What would make sense, given the context of a commerce-imbalance, to base the block reward on?
A straightforward answer (which can be globally known, too) is the ratio of root tokens on each
chain. We can have a network wide rule that there is some network wide inflation rate, and each
chain’s block reward is proportional to the ratio of coins on that chain relative to the entire supply.
This way, the global inflation rate is predictable, even though the number of coins produced on
each chain (via block rewards) is variable. Moreover, with this method we should expect that the
value to the community of each chain roughly matches the distribution of the community’s activities,
and the distribution of security, too. This method is also consistent with the idea of equal work for

27 of 155

[git] = 43830880 = 2025-07-22

Term

2.4 Conversion Contexts

equal reward. We can rely on that idea because equality of work is a result of the market (for block
rewards) formed by participating miners.

If the network uses this rule to determine block reward, then, for either chain C, what can we
say? Let: I (coins/s) be the network-wide inflation rate; G (coins) be the network-wide root
token supply; and C; (coins) be the number of root tokens on chain C. C; (blocks/s) is the block
production frequency of chain C'.

Cy C-coins
Cr=—-1 A
C,-C¢ ., <ocond s set above
C, -1 C-coins
C, = —_— 17
— Gy Oy C-block (7
R, Re-I G- Ly L-blocks . .
L= : - Via Equation 17
L G R Ll Toblock ia Equation
1
R, R:- Ly G L-blocks .
L = . —_— by d t 18
L. LRy Gi-1 R-block y definition (18)

Hold up! Didn’t we just go over — in great detail — why we can’t use block frequencies (L and
Ry) in conversions? Why is it okay to use them now?

To answer this, let’s consider how block rewards could be set network-wide so that they’re consistent
across all chains. Unlike a chain’s difficulty, the block reward needs to be consistent with some
global inflation rate. Equation 18 implies that R, - Ry - Ly = L, - Ly - Ry, so in some cases we
don’t need to know the global state, just that the relationship is enforced. That said, if I is known
across the network (i.e., it is constant or a well known function) then calculating G, is trivial:
Gt = I -1+ Gy, where [is the lifetime of the network (in seconds), and Gy, is any initial root token
supply that was not created via inflation (e.g., via some token generation event).

Could we maintain consistency across chains via something like a Reward Adjustment Algorithm
(RAA)? If each chain commits to the input values (e.g., via the inclusion of C; in their block-headers),
then an RAA could be evaluated using only the header-chain (similar to the DAA). This way, if a
miner (or a chain) tries to subvert or attack the RAA, it’s trivially detectable by reflecting chains.

Reward Adjustment Algorithm (RAA): An algorithm which updates the block reward
of each chain in a network of chains that share a root token. Similar to a DAA, the output
of an RAA is context laden.

If we use an RAA, then the RAA output could become context laden (depending on the RAA’s
input parameters). In the case of a global inflation rate, this means that chains would rely on a
common meaning of “seconds”! So it is by construction and definition that the block frequency
introduced in Equation 17 becomes part of the convertible context. Thus, we can now include Ly
and Ry, though we couldn’t before.

Note that we also prove Equation 7 for this case. We know that — when Ly and Ry are in the
convertible context — we can use them via a scaling factor that typically # 1. For example:
to convert Ls/R; to units of L-blocks/R-block, it must be scaled by £¢/r, (which is contextual
and unitless). We can find a scaling factor here (but not generally) because we included it in a
protocol-level relationship (Equation 17).

This new situation and context are diagrammed in Figure 11.

Let’s use Equation 18 to create our next WEIGHTOF algorithm for this context of a single root
token (SRT) — Algorithm 4.

Ri- L L-hash
Lz ; Rj: “La ﬁ Via Equation 18
28 of 155

[git] = 43830880 = 2025-07-22

2 PROOF OF REFLECTION

Previous difficulty Difficulty

>
(L-hashes /L-block) implicit L-network context (L-hashes/L-block)

//m&
o

Il Confirmation rate

/

Target Block Freq.
R

— Difficulty Adjustment Algorithm — }

ocks/secon i -blocks /secon
block d I L-block: d
N I A
u -
I - L-network context feedback Miner Revenue
| Chain History ¢ ——==—===———=—=————————— o (L-coins/L-block) ==y .
I =]
I =
I IS)
N2 / s, g—
Target Inflation Rate . . e g
(coins /second) %H — Reward Adjustment Algorithm — } H;DS i_
0 N I £
])
I . . Miner Revenue A%
Chain History ¢—————-—-—-—-----ooo . ==7
H Y R-network context feedback (R-coins/R-block) <
u \ R
NZ I Ny

Target Block Freq. i Confirmation rate

(blocks /second) %H — Difficulty Adjustment Algorithm — } I (R-blocks /second)
l
N \ 3 7
Previous difficulty ~ implicit R-network context N Difficulty
(R-hashes/R-block) (R-hashes/R-block)

Figure 11: How does implicit context change when considering networks of a single root token? In
this case, because we set a network-wide inflation rate (Equation 17), by definition Ly and R; have
meaning in the convertible context. In essence: both L and R have convertible factors that are
dependent on the same meaning of “seconds”. The collection of values mutually linked by two-way
arrows («—) define the convertible context. Double-lined arrows indicate the new context used
in the RAA (which is related to the world context). Thick Double-lined arrows indicate the new
hybrid context which allows for conversion (for multi-chain networks of a single root token). As
before, dashed arrows indicate the flow of context.

Algorithm 4 A WEIGHTOF function for networks of a single root token based on the ratio of root
tokens that it hosts.
procedure WEIGHTOF(R;, state) > Returns L-hashes
t < BLOCKTIMESTAMP(R;)
R < CHAINOF(R;, state)
R; < BLOCKFREQUENCYOFCHAIN(R, state) > Block production Hz of R
R; + ROOTTOKENSONCHAINAT(R, t, state) > Number of root tokenson R at ¢
Lq < LOCALDIFFICULTYAT(t, state)
Ly < LOCALBLOCKFREQUENCY (¢, state)
L; < LOCALROOTTOKENS(¢, state)
return CONVSRT g, .(La, Lf, L¢, Ry, Ry)
end procedure

procedure CONVSRT g_,.(Lg, Ly, Ly, Ry, Ry) > Returns L-hashes for 1 R-block
return R; - Ly -Lq+ Ly + Ry > See Equation 19
end procedure

29 of 155

[git] = 43830880 = 2025-07-22

Aside

Aside

2.4 Conversion Contexts

L
. ConvSRT z_,1,(b) =]L%t Rf “Lg-b R-blocks — L-hashes (19)
t - iy

These and the following conversions all collapse nicely if we set R = L. This is due to the
symmetry mentioned at the start of Section 2.3.2.

2.4.1.1 Degenerate Case

There is an even simpler case when the same hashing algorithm is used and when the rewards
and difficulties are equal. In this case, the conversion to/from remote units is trivial, since these
are now, by definition, identical to local units. Equivalently: all constants of conversion between
corresponding values are 1. Subsequently, Equation 16 collapses to:

ConvWorkp_, 1. (w) = w L-hashes IfR;=L4,R.- =1L, (20)

While this works fine for PoR, it offers little value for this discussion on conversion theory.
2.4.2 Different Root Tokens with a DEX

Before we explore this context, I should mention that we are discussing it primarily so that we
can generalize our understanding of the conversion of work. This context presents substantial
challenges that the SRT context does not.

Our starting point will be Equation 2:

L R,
ConvWorkp_, 1, (w) = L—d - XRo1 - R—d - w R-hashes — L-hashes

It’s easy to see that we can work with this — of course, the WEIGHTOF function needs access to
R’s difficulty and block reward, and the exchange rate, too. Do we need to use R4, though? Surely
any conversion to L-hashes will work, right?

Let’s see:
Ly L-hashes
Zdx 'R, Srases
L, ik i R-block
L
. ConvDEX g, (b) = L—d - Xporp R0 R-blocks — L-hashes (21)

Okay, so we can convert to L’s block-weight (L-hashes) without knowing R’s difficulty. It’s good to
know that we have options there — there’s excess capacity in the values we can convert between. If
one value is not available, then we might not even need it. (This is relevant for Section 2.5.)

To move forward, we need to use Xg_, 7, in a new WEIGHTOF function — where does that value
come from?

The value can’t be hard-coded, or provided by a third party — these would introduce vulnerabilities.
We need an accurate exchange rate for the moment of conversion, too — one that is reactive enough
to remain up-to-date, and precise enough to be useful. It also needs to be provable; in practice, it
needs to be on-chain and available to both chains (and they should agree on the exchange rate). If
that wasn’t the case, how could one chain validate the weight of another chain’s PoRs? Ideally, the
exchange rate should already be recorded in both chains. (This way, full nodes of either chain do
not need extra data to calculate/verify chain-weight.)

However, there is a major loop-hole in some of the above requirements: they only matter for
mutual PoR. What’s different if we consider one-way PoR instead?

30 of 155

[git] = 43830880 = 2025-07-22

Aside

2 PROOF OF REFLECTION

In the case of one-way PoR, the reflecting chain doesn’t need to know much about the reflected
chain, and the heavy lifting (like the burden of knowing exchange rates) can be offloaded to the
reflected chain only. Provided that the source of the exchange rate is a well-built, protocol-level
DEX, are there any real issues?

Let’s consider this limited case first: one-way PoR where the reflected chain hosts a DEX between
its root token, and the RT of the reflecting chain. Using Equation 21, we can write Algorithm 5.

Algorithm 5 A WEIGHTOF function for one-way PoR between chains with different root tokens.

procedure WEIGHTOF(B;, state) > Convert reflecting weight to local via a DEX
t < BLOCKTIMESTAMP(B;)
R < CHAINOF(B;, state)
R, < BLOCKREWARDOFCHAINAT(R, t, state) > Block reward of R at ¢
Lq < DIFFICULTYOFLOCALAT(¢, state)
L, + BLOCKREWARDOFLOCALAT(¢, state)
Xgr— 1 + GETLOCALDEXRATEFROMAT(R, t, state)
return CONVDEXR_J/(Ld, LT, Rr, XR—)L)
end procedure

procedure CONVDEX g, 1 (L4, Ly, Ry, Xp—1) > Returns L-hashes for 1 R-block
return (Lg+ L,) - Xr_ 1 - R, > See Equation 21
end procedure

This seems okay; of course, it still depends on the DEX. That means that an attack on the DEX
might be a way to attack the consensus algorithm. Did we just introduce a vulnerability?

If an attacker reduces the exchange rate (L-coins/R-coin) somehow, then that will decrease the
weight of reflected blocks. For example, an attacker might sell a lot of L-coins all at once (or cause
that to happen through traditional market manipulation). If the exchange rate goes down, then
the rate of work (i.e., how fast chain-weight is accumulated) of Chain L will seem to decrease.

However, this isn’t always relevant: if Chain R is much more secure than Chain L, then this doesn’t
change much in practice. Say that Chain R contributes ~100x as much chain-weight as L does.
For an attacker targeting Chain L, reducing the exchange rate by half means that the weight of
reflecting blocks is halved. So the attacker would need to add ~50x the current hash-rate of L to
compete against the reflections from R. If the attacker was mining in public, that would increase
the local difficulty by ~50x, which increases the weight of reflecting blocks by ~50x, too (so an
attacker mining in public is self-defeating). Of course, the attacker could still mine in private,°
provided the exchange rate stays low. Even though the attacker gets a 50% discount via market
manipulation, this is still a very difficult attack (and very noticeable). In effect, attacking L is at
least as difficult as attacking R.

If an attacker increases the exchange rate (L-coins/R-coin) somehow, then that will increase the
weight of reflecting blocks. This does not help the attacker.

It seems that in principle there are some cases where it’s safe to use ConvDEXg_,;, for one-way
PoR. We'll revisit this later in Section 3.4.1.

What about mutual PoR, though? Notice that Algorithm 5 is trivially generalized for mutual
reflection by replacing GETLOCALDEXRATEFROMAT with a suitable EXCHANGERATE-
ToLOCALOFAT, i.e., a DEX that satisfies the requirements we specified earlier. So it seems
like our conversion method should work; the weak-link is the DEX, not the conversion.

In the context of Ultra Terminum and Amaroo, this isn’t an important problem to solve. After
all, this is a paper about consensus, not trustless, decentralized, cross-chain, protocol-level
markets. If mutual PoR is ever used to secure multiple chains with heterogenous tokens, this

26For the purpose of UT and Amaroo, this turns out to be a non-issue. See Section 3.2, Section 3.4.1, Section 4.8,
and Section 4.9.

31 of 155

[git] = 43830880 = 2025-07-22

Aside

2.5 Converting Confirmations

problem will need to be answered, though.

2.4.3 What About SPV?

Both contexts (SRT and DEX) require that participating chains can do on-chain SPV against
one another. Chains need some ability to introspect reflecting chains — e.g., SRT requires that
users can move root tokens between chains, and the DEX context requires two chains to agree
on the exchange rate between their root tokens. Even without this requirement, some method of
cross-chain communication is clearly desirable.

Eventually, we’ll need to construct a method for SPV between mutually reflecting chains that works
and is safe. However, there are still other problems that we have not yet solved, and the solutions
may motivate certain blockchain designs over others. The difference between these designs will
likely impact whether (and how) SPV can be done safely. So, attempting to solve the SPV problem
at this point is premature.

We will proceed on the assumption that SPV is possible and easy to do in a reasonable time period,
and we’ll investigate the problem of SPV between reflecting chains in detail in Section 4.11.

2.5 Converting Confirmations

So far, we’ve considered PoW chains only. Conversion of chain-weight between PoW chains can
work if and only if we can convert between work (i.e., hashes) done on each chain — given an
appropriate context. For a given PoW block, the network knows exactly how much work is implied
by that block — the expected number of hashes to produce it. Thus, for PoW chains, there is an
exact conversion between work and confirmations (for some context at some point in time). Over
short time-scales, this conversion ratio is approximately constant (in general it’s a function that
takes a timestamp as an input parameter). Thus, chain-weight (as represented in figures via X,
e.g. Figure 23) can be represented either in something like hashes or difficulty or chain-weight can
simply be in terms of confirmations.

If we convert work to confirmations, will we end up with something incompatible and
contradictory to the traditional notion of “a confirmation”? There are definitely differences.
For example: if we convert confirmations, then we’ll have non-integer confirmations, and
what does 0.88 confirmations mean? Is that less good than a normal confirmation?

This problem arises because we’re not actually converting work to confirmations, per se:
we’re converting another chain’s work into equivalent-confirmations relative to something.
Equivalent-confirmations are another chains confirmations that have been converted to be in
terms of the local chain’s confirmations. Most likely, those equivalent-confirmations will be
relative either to some known historical confirmation, or to that of the current block.

Why think about chain-weight in terms of equivalent-confirmations instead of work? There are a
few reasons. First, confirmations are general! If we reason in terms of confirmations instead of
work, then maybe we can apply these ideas to other chains that don’t use PoW. Second, it simplifies
thinking. The purpose of converting chain-weight is clearer and easier to reason about. Finally, it
makes explicit the requirement that we can only compare to a grounded context.

There is no way to say X work on L is worth Y work on R without adding necessary context
like when that conversion is happening. Confirmations (like work) require that grounding, since
they need to be scaled when converting between different chains. What about confirmations
from the same chain? Unlike work (which can be summed directly), confirmations always require
conversion to a known standard — even when they're from the same chain. For example, we can
say that the single confirmation provided by Bitcoin block 704610 is equivalent to approximately
19,893,045,000,000 genesis-confirmations.”” The conversion-ratio is equal to the difficulty of block
704610. That is, it would take a chain of ~ 20 trillion blocks, each with 1 genesis-confirmation

27A genesis-confirmation is relative to the Bitcoin genesis block — which had a difficulty of exactly 1.

32 of 155

[git] = 43830880 = 2025-07-22

2 PROOF OF REFLECTION

worth of work, to match the weight of block 704610. Curiously, while this works for the fork rule
(since it compares chain weights), it does not work when waiting for transaction confirmations —
in that case, 20 trillion confirmations at 1 difficulty is much more secure than 1 confirmation at 20
trillion difficulty.”®

Now, converting confirmations, how do we actually do it? If we want to convert confirmations,
then we’ll need to abstract away from the idea of difficulty in our conversion method.

. R, L-blocks
Consider: E . XR_>L m
R,
.. ConvBlocksg_,1.(b) = T Xgp_p-b R-blocks — L-blocks (22)

So 1x R confirmations is worth (% - Xp_, L) L confirmations. Nice and simple.

2.5.1 Coins per Confirmation

Given a multi-chain network, could we measure block-weight in coins? It seems promising and
elegant if it works, but does it have any real-world meaning?

One example where measuring chain-weight in coins does have some meaning is Section 2.4.1 (the
SRT context). Let’s consider this, starting with the conversion used in Equation 18.

Cy L L-coi
C.=0L,- L—: - C—i ﬁ Via Equation 18
c, . Cy _L,. Cy L-coins
Ly Ly L-block
C Li+ R L-coins
Z L, L—z =L,- tI_: ! L—E?;Icllb{ Sum coins (as a proxy for weight) (23)
Ce{L,R}
Ct Lt -1 Ct L-coins . .)
L, 2t— N’ O Via Equation 17
LG L, L T olock ia Equation
ey L-coins
G- Ly L-block
I L I L-coi
GC:- I = tgth L—f ﬁ Sum coins (as a proxy for weight) (24)
Ce{L,R}

What does Equation 23 imply if L and R are the only two chains in a context like Section 2.4.17
Notice that, in this case, L; + R; = Gy, the network-wide currency supply. One implication is that
weight (measured in coins) effectively counts how much of the full network is contributing to Chain
L’s security — represented via the coins that were minted in those contributing blocks. It’s easier
to see in Equation 24 as the sum collapses to I/L;.

If the all chains in the network are functioning well, we should expect that summing a chain’s
weight in coins over the full history of the chain should be close to the sum of all coins minted
through block rewards. Of course, this is only useful over multiple chains. If a single, traditional
blockchain tried to do this, then all chain-weights would be basically identical!*’ This

28For an explanation of why, see Analysis of hashrate-based double-spending (Meni Rosenfeld; 2012) and Section 4.7.

29 This may be a new criticism of PoS. In essence: a blockchain needs something like a DAA to factor-in
participation. PoS chains use coins instead of hashes, but coins will never provide a way to determine which chain
has higher participation. Moreover, coins are actually a very bad way to measure participation (for a standalone PoS
chain), because the most valuable future network is one where coins are being used for actual trade, and this must
happen at the expense of the number of coins used for staking. Thus, PoS chains can only ever have objectively
secure fork-rules when other factors are included in their conversion contexts (like using PoR with a PoW chain, or
some system of automatic checkpoints). One thing PoS chains could try is: measuring weight in another chain’s
hashes via PoR.

33 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv

Aside

Term

2.6 Reflection Between PoW and PoS Chains

happens because these conversion methods don’t try to convert work done at different times. PoR
only ever converts near-simultaneous work, i.e., if the coin-weights of reflecting blocks are summed,
that is always converted to local work with respect to some specific moment in time.

While measuring weight in coins (in this case, at least) seems to have some meaning, we probably
shouldn’t leave chain-weight in those units. The difficulty of a PoW network converts network size
(participation) into hashes, and it is adjusted regularly. If a chain-weight measurement doesn’t
account for this, then how does it include participation at all? Without including participation in
chain-weight, how can two local alternate histories be meaningfully compared? When measuring
and converting chain-work, we always want to convert confirmations or coins back to meaningful
units which factor in participation in some way.

2.6 Reflection Between PoW and PoS Chains

Whether PoS systems can be secure is not a focus of this paper. There are still criticisms of
PoS without adequate answers. The intention of sections like this is not to endorse PoS, but
rather to explore what is possible if PoS can be done securely.

Perhaps one of the most interesting features of Proof of Reflection is that PoW chains and PoS
chains can reflect one another. Up till now, we’ve contextualized the weight of a reflection via the
work required to produce a block. But the concept of work does not neatly apply to foundational
consensus mechanisms that do not require the utilization of some physical resource — such as PoS.

Foundational Consensus Mechanisms: Those mechanisms, like PoW and PoS, which
can work in some standalone fashion; PoR is a cross-chain extension to such mechanisms.

Putting the issue of conversion aside for a moment, is it possible in principle for PoW and PoS
chains to reflect one another? Yes. Additionally, PoR provides decisive advantages both for PoW
chains and PoS chains, though there are some additional problems that must be solved, too.

If a PoW chain is reflected in a PoS chain, then an attacker will likely need more than just
computational resources to attack the PoW chain. Consider a PoW chain and a PoS chain that
share a root token, and each chain hosts approximately 50% of the total supply. If the two chains
have equal block production frequencies, then (using Algorithm 4) 50% of the network’s security
comes from each chain.

Consider an attack on the PoW chain and presume that the difficulty on the PoW chain is constant
over the attack, i.e., the PoW chain’s difficulty doesn’t adjust quickly enough to react to the attack.
Additionally, assume the attacker has mot been contributing to the network before the attack, i.e.,
their hash-rate is not accounted for in the PoW chain’s difficulty. Given the two chains are mutually
reflecting, half of the network’s security is provided by the PoS chain (and thus immune to the
attacker in this case). Therefore, a successful attacker — using the traditional method of mining
a competing chain-segment in private — must generate more blocks than both chains combined.
That means the attacker needs twice the honest hash-rate for a guaranteed successful attack.

However, consider the case that the security contribution of the PoW chain is capped at 50% — i.e.,
capped at the proportion of root tokens hosted on that chain. For our purposes, this situation is
approximately equivalent to that where the PoW chain has a perfect difficulty adjustment algorithm,
i.e., the network instantly adapts to keep the block production frequency constant. For the sake of
this demonstration, assume that these chains retroactively adjust block weightings to ensure this cap
holds. Let p > 0 be the honest miners’ contribution to overall network security, and g > 0 be the
attacker’s contribution. As the PoW contribution to overall security is capped at 50%, the equality
p+ q = 0.5 is enforced. In this case, the attacker will have a maximum chain-weight contribution

L +3.

rate of % —L_ and the honest chain-segments will have a maximum contribution rate of %

. R
q+p q+p

34 of 155

[git] = 43830880 = 2025-07-22

https://github.com/zack-bitcoin/amoveo-docs/blob/master/other_blockchains/proof_of_stake.md
https://github.com/zack-bitcoin/amoveo-docs/blob/master/other_blockchains/proof_of_stake.md
https://github.com/zack-bitcoin/amoveo-docs/blob/master/other_blockchains/the_defence_of_pos.md

Aside

Quote

Quote

2 PROOF OF REFLECTION

The condition for a successful attack is shown in Equation 25, and the inequality has no solutions.

1 1 1
—_ q > —_ p + —
2 g+p 2 q+p 2

q>p+(g+p)

0>2p which is a contradiction since p > 0 (25)

Given the right set-up, a PoW chain gains an incredible security advantage from mutual reflection
with a PoS chain.

Note: The attack scenario above assumes that the attacker is not attacking the PoS
chain that is reflecting the PoW chain. That is not a safe assumption. Additionally, with
traditional blockchains (which are trees), an empty-block DoS is possible — this is addressed
in Section 4.8.

What about the PoS chain, though; what benefits does it gain from this relationship? The answer
here is simple: by using mutual PoR with a PoW chain, the PoS chain gains thermodynamic
security; the PoS chain’s history is thermodynamically secured by the PoW chain. This solves
the Nothing at Stake problem for any well constructed PoS scheme.?’ Furthermore, it is
possible for error-correction methods like slashing to be implemented on the PoW chain, not the
PoS chain. Moving the staking and error correction methods to a different chain will require subtle
and precise protocol design, but such changes are in principle possible with tolerable overhead.

There are some (as yet) unsolved problems that arise through this design, such as the economic
details of managing block rewards across the PoW and PoS chains. Given that solutions to this
problem likely depend on the specific details of the relevant PoS systems, this problem is not
addressed here. Note: conversion methods for reflected weight, like Algorithm 6, will work provided
a well defined WEICGHTOF function exists.

There are some other conjectured solutions to the Nothing at Stake problem.

Long-range “nothing-at-stake” attacks are circumvented through a simple “checkpoint” latch
which prevents a dangerous chain-reorganisation of more than a particular chain-depth.
To ensure newly-syncing clients are not able to be fooled onto the wrong chain, regular
“hard forks” will occur (of at most the same period of the validators’ bond liquidation) that
hard-code recent checkpoint block hashes into clients.

— Dr. Gavin Wood; Polkadot Whitepaper, $5.2

Provided that stakeholders are frequently online, nothing at stake is taken care of by our
analysis of forkable strings (even if the adversary brute-forces all possible strategies to fork
the evolving blockchain in the near future, there is none that is viable), and our chain
selection rule that instructs players to ignore very deep forks that deviate from the block
they received the last time they were online.

— Quroboros: A Provably Secure Proof-of-Stake Blockchain Protocol, s10

These two examples solve the Nothing at Stake problem via mechanisms that are external to the
protocol itself, i.e., hard-coded checkpoints and the requirement that nodes are online “frequently”.

The solution provided by mutual reflection with a PoW blockchain — i.e., thermodynamic security
— is provided by the protocol itself and can only increase the security of PoS mechanisms. Thus,
UT’s solution to Nothing at Stake is qualitatively superior.

30T consider the Nothing at Stake problem and long range attacks to be two sides of the same coin. Maybe it’s
worth explicitly mentioning that mutual PoR solves long-range attacks, too.

35 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20240927041732/https://gateway.pinata.cloud/ipfs/QmbH4TzUB7izvuwidG598DNnk3Nmd1aWEyf8KLxeAkrvkK
https://web.archive.org/web/20240927042139/https://gateway.pinata.cloud/ipfs/QmWCAHyi35SeXH2E4e8jRVk7yNse2x6D14uPfABnhagbvN

2.7 Counting Work

2.7 Counting Work

When chains L and R have the same block frequency and produce blocks in an orderly fashion, it’s
trivial to count how much work is contributed by each PoR. However, real-world blockchains do
not produce blocks like this — even if chains L and R have the same block frequencies, sometimes
L will produce 2 or 3 (or more) blocks before R produces its next one (or vice versa).

B () [—

Time

Should R;;, include 3 PoRs, or just 1?7 How should R;;; calculate the weight of those PoRs and
the total weight contributed to chain R?

If Rj41 had reflected only L;;1, then it’s clear that we would count work from both L;1; and R;11
— that much is easy. However, R, reflected three L headers. Should R;,; count work from all
three, or something else? Why?

Consider the situation from the miner’s perspective (the miner of L;;3). There is no new R block
for them to reflect — if there were, they’d include it. The miner is effectively claiming — via the
absence of a new reflection — that L, »’s parent (L;11) reflects the most recent R header (R;);
that L;yq is still up-to-date. From this perspective, it’s clear that L; ;s should contribute reflected
weight to the best R headers that were most recently reflected: in this case, just R;.

We can evaluate L;;3 the same way.
So, yes Rj;1 should include and count work from all 3 PoRs in this case.

What about a more complicated example?

(—(\/—’Lprl‘(—’[zprg‘(—’[/ﬂrg‘;—

Time

Rj42 can be evaluated by similar logic to R;y; above, but what about L;14?
Does L4 count the weight of Ry417 If so, does it count towards L;;3’s chain-weight?

The difficulty in answering these questions — with what we’ve covered so far — is that the fork-rule
doesn’t care where the weight is added, just that it is added. When the fork rule compares L; 4
to an alternative block, only the total chain-weight of each is relevant. However, to understand
exactly how PoRs should be counted, we need to know more.

The essence of PoR is the confirmation of another chain’s history — so a reflection cannot contribute
to a block which exists in the reflecting block’s future. It must be that reflections contribute to the
most recent common ancestor of all possible L blocks which could include that specific PoR.

This leads us to a simple and elegant way to count reflected work: follow the arrows back from the
reflecting block to the most recently reflected local block.

L;y4’s reflection of Ryyo contributes chain-weight to L;,3 because any block that builds on L; 3
could reflect Ry4o. Following the arrows: Ryyo > Liy3.

Similarly, L;y4’s reflection of Rgy1 (which could be either explicit or implicit via Rji2) must
contribute chain-weight to L; because any block building on L; could reflect Rj41 and include that
PoR. Following the arrows: R4 — Ry - L;.

We can also say more about Rjys’s reflection of L;;3, now, too. Particularly, that the reflected

work of L;yq -+ L;;+3 should contribute to Ry, not Ry41.

36 of 155

[git] = 43830880 = 2025-07-22

3 UT;: CONSTRUCTING ULTRA TERMINUM

3 UT;: Constructing Ultra Terminum

Proof of Reflection can be used to build UT; — an O(c?) foundation for a blockchain network
(called the simplex). This section details the construction of such a foundation, and how it can
be extended up to UT3 — which has O(c*) complexity. The O(n) scaling configuration (UTy) is
detailed in Section 6.

Such a foundation (the simplex) is not a sharded blockchain — there’s no requirement that
participating chains are interchangeable or using the same primitives. This was demonstrated via
the example in Section 2.2. Rather, the simplez is an emergent construct that is created via the
relationships between blockchains. Instead of one blockchain being split into many (as occurs with
sharding), the simplex is many blockchains becoming one coherent network.

3.1 Generalizing Reflection

Proof of Reflection is, in essence, the idea that a chain can acknowledge that its history has been
confirmed by a different chain, and that this fact can be used to share security between chains.
That is a simplification, but it is the essence of it.

In principle, the necessary capabilities (and actions) that some chains, C'4 and Cg, must have (and
do) in order for C4 to be reflected by Cp are:

1. The headers of C4 can be (and are) freely recorded — promptly and unambiguously — in
CB;

2. The headers of Cp can be (and are) freely recorded — promptly and unambiguously — in
Cy; and

3. Cy4 is able to (and does) promptly prove that its past headers have been recorded in C'p, and
has full knowledge of which headers have been recorded.

Algorithm 6 Implementation of REFLECTEDBLOCKWEIGHT to support an arbitrary number of
reflecting chains.

procedure REFLECTEDBLOCKWEIGHT(L;, state)

w0 > Sum of weights
for R in ALLREFLECTINGCHAINS(state) do
wgr <0 > Sum of converted weights for this R
ng <0 > Count of reflecting blocks
Rblocks < CHAINHEADSOFVIA(R, L;, state) > R chain-heads known to L;
for Ri in Rblocks do
RCHs + REFLECTEDCHAINHEADS(R;, state) > Local blocks reflected by R;

if L; in RCHs then
nr <+ nrp+1

wg wr + WEIGHTOF(R;, state) > Convert weight of R;
end if
end for
weightMod <~ CAPWORKOF(R, ng, state) > Optionally cap the work of R
w 4+ w + wg - weightMod
end for
return s
end procedure > This is an inefficient method and would not be used in production.
procedure CAPWORKOF(R, n, state) > A simplistic method for capping work

Ly < BLOCKFREQUENCYSELF(state)

R; < BLOCKFREQUENCYOFCHAIN(R, state)

e+ Ry + Ly > Expected blocks from R per L block

return min(1, e + max(1,n)) > Cap the contribution of Rpocks per L block
end procedure

37 of 155

[git] = 43830880 = 2025-07-22

Term

Term

3.2 UT;: The Simplex

The benefits from Proof of Reflection begin as soon as C4 integrates this knowledge into its
chain-weighting algorithm, by a method suitably similar to Algorithm 2 and Algorithm 3.

If C4 and Cp are doing mutual Proof of Reflection, then both chains must satisfy all requirements.

Is C4 able to simultaneously do reflection with more than one other chain, e.g., C¢...Cz? Yes.
There is nothing that we have covered so far that would prevent this. If Proof of Reflection is
viable with a single other chain, then it is viable with many other chains. However, the dynamics
do become increasingly complex, as we will soon see.

In order to support arbitrarily many reflections, we need to modify REFLECTEDBLOCKWEIGHT
from Algorithm 2 as shown in Algorithm 6.

Note that Algorithm 6 integrates the cap on weight contributed by each reflecting chain, as suggested
in Section 2.6.

3.2 UT;: The Simplex

(a) Proof of Reflection between 2 (b) Proof of Reflection between 7 (¢) A 17-chain simplex; a 16-
blockchains. A 1-simplex. The blockchains; a 7-chain simplex; a simplex. It has 136 unique mu-
most basic non-trivial simplex. 6-simplex. tual reflections in total.

Figure 12: Simplexes of increasing capacity. Vertices are simplex-chains. Edges are the reflections
between simplex-chains.

Simplex: The single coherent structure that emerges from a collection of blockchains that
mutually reflect each other.

When two or more blockchains mutually reflect each other, they form a simplez’®'. For the sake of
brevity: all reflections within a simplex are mutual reflections, and I will omit mutual from now on
when discussing them. Examples of simplexes are shown in Figure 12.

When a blockchain is part of a simplex, it is called a simplez-chain (as distinet from dapp-chains).

Simplex-chain: A blockchain that is part of a simplex; it mutually reflects all other
simplex-chains in that simplex.

To maintain consistency with the geometric usage of the term simplex: a simplex with k41 chains is
called a k-simplex or a (k + 1)-chain simplex®?. In a k-simplex, each simplex-chain has k reflections

31The name is taken from geometry (particularly: the higher-dimensional kind). A simplex, for a given dimen-
sionality, is the uniquely simplest polytope; e.g., a line in 1D space, a triangle in 2D space, a tetrahedron in 3D
space, etc. A k-dimensional simplex is known as a k-simplex. As shown in Figure 12, a particular 2D projection of a
k-simplex (which produces a regular (k 4+ 1)-gon with additional edges between all pairs of vertices), is identical to a
diagram of all possible mutual reflections between k + 1 blockchains, where each chain is represented by a vertex and
each mutual reflection is represented by an edge.

32NB: I will ignore this distinction for k > 1.

38 of 155

[git] = 43830880 = 2025-07-22

Aside

3 UT;: CONSTRUCTING ULTRA TERMINUM

(one reflection for each of the other simplex-chains). A k-simplex has, in total, (’HQ'I) reflections.

The security of simplexes is discussed in Section 4.10.1.
3.3 UT;: Scaling Complexity Intuition

Although we will rigorously investigate UT’s scaling complexity in Section 5, it will prove
useful to introduce N7 here and to gain an intuition for UT’s scalability before Section 4.

How scalable is UT;?

Let us start by assuming that a single blockchain has O(c) capacity (measured in transactions
per second) and is thus O(c) scalable. We’ll also assume that the headers are O(1) bytes (i.e., a
constant size).

Note that a single blockchain is a 0-simplex.

A 1-simplex has two blockchains, and each chain must record the headers of the other and the
respective PoRs. For the sake of simplicity, let’s assume that the PoRs are also O(1). Thus, each
chain loses O(1) of its O(c) capacity, and the network’s total capacity is 20(c) —20(1) = O(c).

Since each chain has finite capacity, there is an absolute maximum size to a simplex. We can keep
adding more chains until all blocks are 100% full of headers and PoRs. However, this system has 0
capacity for transactions. So, there must be a capacity maxima with more than 2 simplex-chains
and fewer than the absolute maximum.

What we're observing is that the overall capacity is the product of the size of the simplex (in chains)
and each chain’s remaining capacity — a quadratic relationship.

Let’s call the proportion of capacity for transactions ¢, and the proportion for reflections r. We
know that ¢t +r = 1, since t + r is 100% of a chain’s capacity. However, the network-wide capacity
is proportional to the product of t and r. Maximizing tr suggests that a chain’s capacity should
be split approximately 50/50 between ¢t and r, so t = r = 1/2 = O(1). Given that ¢t and r are
proportions of the capacity, we can say O(ct) + O(cr) = O(c). Thus, the overall capacity is given
by O(ct) - O(er) = O(c?).

This relationship is analogous to the relationship between a rectangle’s maximum area for a given
perimeter length: the area scales with the square of the perimeter (and such a rectangle is a square).

Let’s say N; is the number of chains which maximizes a simplex’s capacity (for transactions). To
get a feel for Ny, let’s estimate it using example chains based on modified Bitcoin parameters.

First, we’ll add a merkle root of headers and PoRs to the header, increasing header size from 80
to 112 bytes. Second, we’ll reduce the block frequency down from 10 minutes to 1 minute, and
scale the block limit down from 1 MB to 100 kB (this will give us more realistic numbers). Let’s
assume the merkle branch leading to a header is 256 bytes, so the total PoR overhead is 368 B /
block / chain. We want to use 50% of the overall capacity (100 kB / block) for PoRs, so each block
should contain ~50 kB worth of PoRs. Dividing the PoR, capacity by the per-chain overhead gives
us V1 = 139 chains and a network-wide capacity equivalent to ~70 Bitcoin networks.

3.4 UT,: Dapp-chains

Dapp-chains are a method by which Ultra Terminum exceeds O(c?) scaling without using the
method described in Section 6. To be clear: the O(c?) configuration of UT is compatible with that
other method; dapp-chains are a separate and independent method of scaling. However, there are
decisive reasons to introduce and use dapp-chains. Dapp-chains provide features that the O(n)
scaling configuration alone cannot easily provide. Additionally, dapp-chains increase the simplex’s
scalability to O(c?) or O(c?).

39 of 155

[git] = 43830880 = 2025-07-22

Term

Term

3.4 UTs: Dapp-chains

Dapp-chain: An application-specific child-chain that is secured via the parent-chain.
Dapp-chains may have architecturally distinct state- and transaction-schemes (distinct from
those schemes used in the simplex, and other dapp-chains).

Intrinsically, dapp-chains are not restricted to any particular foundational consensus method. They
might use PoW, or PoS, or PoA, or something else. However, dapp-chains also use Proof of
Reflection with their host simplex-chain. With a suitable foundational consensus method, PoR
enables dapp-chains to be as secure as their host simplex-chain with little overhead. Note that,
since dapp-chains can use whichever foundational consensus method, they can optionally have their
own root token (and use that for mining rewards, transaction fees, etc).

It’s preferable that a simplex-chain validate the headers of its dapp-chains (similar to a light client),
though this is not required. For some dapp-chain consensus methods (such as PoS), there might be
special primitives that a host simplex-chain must support. However, only that host simplex-chain
requires those primitives; other simplex-chains do not.?* This means that simplex-chains can
specialize in hosting particular types of dapp-chains, providing rich and efficient environments (for
nodes of both simplex-chains and dapp-chains).

Validating dapp-chain headers, on-chain, can be done via the following simple, clean, and extensible
method: encode dapp-chain headers as simplex-level transactions. This means that supporting
new dapp-chain consensus methods is about as difficult as introducing new transaction types (or
opcodes), and different simplex-chains have a great deal of freedom in choosing which dapp-chain
consensus methods to support.

Header-transactions: Dapp-chain headers that are encoded as simplex-level transactions;
i.e., they are processed by a simplex-chain as a transaction, but they also function as the
header for a dapp-chain block.

Practically speaking, a simple input-output transaction system with light scripting capabilities
(like that of Bitcoin) can be created to facilitate the necessary primitives. Additionally, different
simplex-chains can implement different scripting systems, effectively facilitating any compatible
consensus mechanism. There is not much (if any) overhead to using an input-output system like
this: a header’s parent hash is like a transaction input, the output is the header or its hash®*, and
any other particulars of the header can be treated as an input script to the transaction®®.

3.4.1 Dapp-chain Security

If the headers of dapp-chains are simplex-level transactions, what can we say about the security of
dapp-chains?

First, notice that there is no substantive difference between standalone headers and header-
transactions. That means that zero-confirmation header-transactions are exactly as secure as a
standalone counterparts (and at least as secure as zero-confirmation transactions). This is not very
secure in the case of a PoW dapp-chain, but it means that a PoS dapp-chain’s zero-confirmation
header-transactions could be just as secure as blocks from an equivalent standalone PoS blockchain.
(It also means that the PoS dapp-chain is more secure after header-transactions are confirmed,
compared to the standalone equivalent.)

When a header-transaction is confirmed by the simplex, the corresponding dapp-chain can efficiently

33The caveat here is that other simplex-chains may need to be capable of validating fraud proofs for the simplex-
chain in question. So they don’t need these primitives available to local transactions, but do need to be capable of
executing those primitives if a fraud proof involves one.

34 A header-transaction’s output script can be generic (or templated) as it is the same for all header-transactions
for that dapp-chain. In practice this can be as simple as a single opcode that validates that header. In Bitcoin, an
output script is known as the scriptPubKey.

35In Bitcoin, the input script to a transaction is called the scriptSig; see https://en.bitcoin.it/wiki/Transaction.

40 of 155

[git] = 43830880 = 2025-07-22

https://en.bitcoin.it/wiki/Transaction

3 UT;: CONSTRUCTING ULTRA TERMINUM

use one-way PoR to partially®® inherit the security (and security properties) of the host simplex-
chain.®” Similar to mutual PoR, this can provide a security context where otherwise-insecure

methods of consensus can be done securely.

With regards to doublespends, one-way PoR means that the reflected chain is at least as difficult to
attack as the reflecting chain (as we covered in Section 2.2.4). Since the parent simplex-chain is as
difficult to attack as the complete simplex, each dapp-chain must therefore also be that difficult to
attack. Provided that a dapp-chain’s blocks are available, attacking a dapp-chain is as difficult as
attacking the entire network.

Note that parent-chains (generally) need to record their child-chains’ headers anyway, so this use of
one-way PoR — where a simplex-chain reflects child dapp-chains — has near-zero overhead for
both the simplex-chain and the dapp-chain.

One major, generic concern for dapp-chains is preventing DoS attacks.®® This is one reason to favor
PoS (or PoA) dapp-chains over PoW dapp-chains. Another concern is the availability of dapp-chain
blocks.

3.4.1.1 Spam, Availability, and Dapp-chains: A PoW /PoS Asymmetry

PoW Dapp-chains Proof of Work systems operate best when all practicable hashing resources
are contributing to the same system. That is: all economically available miners are mining on the
same network.

We can explore this with a thought experiment. Say I forked the Bitcoin codebase and created a
new genesis block with today’s date, which in turn creates a new blockchain network. Crucially, I
do not change the hashing algorithm.

How secure would this network be? Given that the actual Bitcoin network has an established
hash-base, and there are many old, uneconomical mining units out there, the overwhelming majority
of hash power would not be working on my new network (either it would be off, or working on
Bitcoin). In fact, even if all the units that were powered off were used to mine my network, it
would still have but a small fraction of Bitcoin’s hash-rate. The effect of this is that at any point a
small proportion of Bitcoin miners could divert their miners and perform a 51% attack against my
network. Therefore, given Bitcoin exists, my network cannot be considered secure in practice.

If two traditional PoW chains share a hashing algorithm, then the one with more hashing power is
the only secure candidate.

How does this apply to PoW simplex dapp-chains? First, notice that if a PoW dapp-chain has
a comparable difficulty to a simplex-chain, then the simplex as a whole (including other dapp-
chains) would benefit if that hashing power were used on the simplex instead of the dapp-chain.
Additionally, moving hashing power the other way (from simplex to dapp-chain) would weaken the
overall security of the simplex. From this, we can intuit that the most stable, secure system is one
that heavily prioritizes mining PoW simplex-chains over PoW dapp-chains. This brings us to our
second observation: that PoW dapp-chains will naturally have a much lower difficulty than their
host simplex-chains.

In a functioning PoW network, the work serves not only as the method of securing the chain, but
also a method to prevent block spam. This is due to the DAA regulating block production rates.
DAAs are unreliable, though, when there are large reserves of mining power that might come online
at any moment for an unknown period of time, and then disappear. One typical consequence of

36Some security properties of the host simplex-chain are not inherited. For example: the simplex ensures data
availability of simplex-chain blocks, but not dapp-chain blocks. Other security properties, like thermodynamic
security, are inherited.

37Note: PoW dapp-chains will have a much lower difficulty than the host simplex-chain. Although a simplex-chain
could do mutual PoR with dapp-chains, this is unnecessary and inefficient — provided that this difficulty asymmetry
exists. Although there is no fundamental reason that PoW dapp-chains must have a much lower difficulty, we should
take care to avoid any implementation that would compromise or reduce the security of the simplex. Practically, this
probably means avoiding PoW dapp-chains (see Section 3.4.1.1).

38Unfortunately, the strategy we use in Section 4.8.3 to protect simplex-chains does not work here.

41 of 155

[git] = 43830880 = 2025-07-22

Aside

Aside

3.4 UTs: Dapp-chains

a sharp drop in mining power is a period where the difficulty is much higher than the remaining
miners are capable of meeting, resulting in reduced block production. In extreme cases, this may
require a hard-fork to resolve. The usual solution to this is a rule whereby blocks at lower difficulty
can be mined, provided that a suitably long duration has passed since the prior block. If PoW
dapp-chain headers are verified by the simplex, a hard-fork to change the DAA of a PoW dapp-chain
would require the host simplex-chain to be aware of this change. This is not the only issue with
block spam, though. If a miner can trivially create blocks (because the difficulty is too low), then
they could flood the host simplex-chain with valid (but useless) header-transactions. This is a
problem, not just for that dapp-chain, but for all other dapp-chains hosted by that simplex-chain.

These are substantial problems, but might be soluble. The next problem, however, is not.

Spam is not the nail in the coffin for PoW dapp-chains. Rather, that honor falls to availability.

The problem itself is simple to describe: a malicious miner creates valid blocks, and publishes the
header-transactions to the host chain, but does not publish the block bodies to the dapp-chain
network.

A key requirement of dapp-chains is that they cannot increase the load of the miner above O(c). This
means that processing a single header-transaction cannot exceed O(¢/Np), where Np is the number
of dapp-chains that a simplex-chain is capable of hosting — or, more accurately, the number of header
transactions it can process per block; we’ll assume these are equivalent. Ideally O(Np) = O(c),
assuming it is not possible to do better than O(1) when processing a header-transaction.

If we are to have reliable inter-chain operation between simplex-chains and dapp-chains, then we
must have some assurance that the recorded blocks are valid, which requires them to be available.
Invalid blocks would allow a miner to steal funds via cross-chain transactions, which is obviously
bad. Provided that we only allow (public®”?) dapp-chains which support fraud proofs, then we have
the foundation for that assurance. But, fraud proofs only work if honest nodes have access to the
block to calculate said fraud proof. It is generally not possible to create a fraud proof if the block
is unavailable.

Since availability is a requirement, how can we ensure that dapp-chain blocks are available and not
withheld?

Note that Proofs of Availability are of no use here, because verifying them requires at least
as many bytes as the block” itself; it is just as bandwidth intensive as downloading all blocks.
So, at best, we might be able to do some kind of challenge-response, but, practically speaking,
this isn’t the solution we’re looking for.

%This is somewhat intuitive since proofs of availability allow for the reconstruction of the original block.

I suspect that, for PoW dapp-chains, it is in principle not possible to ensure the availability of
blocks. This is due to the principles by which PoW blockchains operate. Particularly, proofs of
work are created in isolation. Only after a PoW is found is a block shared with the network (see
Figure 13a). Therefore, it is always possible to partially share a block in (pure) PoW networks.

PoS Dapp-chains First, it’s important to note that there are many variants within the “Proof
of Stake” family of consensus methods. For our purposes right now, we’re interested in those where
multiple validators are involved before a block is finalized / validated. Figure 13h demonstrates a
simplification of such a block creation processes.

Provided that the PoS method is well-constructed, this kind of PoS solves both the spam and
availability problems.

39If a dapp-chain is designed to be private, opaque, or non-financial, then we might not care (or even be able to
care) about the validity of its state transition.

42 of 155

[git] = 43830880 = 2025-07-22

Aside

3 UT;: CONSTRUCTING ULTRA TERMINUM

Draft a block |[«<— Draft a block

Restart or Restart or
Update Update
Mine the block |—— [Validate with group}
Find PoW Agree & Produce PoS
[Broadcast the block} [Broadcast the block}
(a) The PoW block creation process (simplified). (b) An example of the kind of PoS block creation

process we're after.

Figure 13: The block creation process (simplified) for PoW chains and some variants of PoS chains.

Typically, such systems prevent validators from creating competing blocks by imposing an economic
penalty (slashing) on those validators who help create two or more blocks at the same height (or
slot, or whatever). Since slashing will destroy a validator’s capital, and thus destroy their ability to
be a validator, we can infer that this process will be rare. That’s good, because we don’t have to
care much about the overhead of resolving these cases. This solves the spam problem.

The availability problem is solved provided there is at least one honest validator with knowledge of
the block contents (because honest validators want to broadcast the block).

The term “well-constructed” is doing most of the heavy lifting here. I don’t think we need to
worry, though, because these sorts of problems are what PoS designers spend a lot of time
on. So, if any contemporary PoS chains are secure, then we should have a viable option for
PoS dapp-chains.

PoA Dapp-chains & Others Regarding spam and availability — what about PoA? Fortunately
this case is trivial: we offload the responsibility completely to the PoA operators. The reason is
simple: if PoA operators are withholding blocks or committing fraud, then that dapp-chain is
already compromised.

And to cover all our bases: if interoperability with the simplex is not required, then we don’t care
what consensus method is used; the simplex-chain is just time-stamping data.

No Yes

No

Need a Yes) Requu“esj Yes Does PoA No
Dapp-chain? ———| interop. with work for
: Simplex? use case? T

Figure 14: A flow chart to decide which proof system to use for a dapp-chain, assuming a secure
PoS method is available.

It is worth noting that there are other directions that dapp-chains could take, too. Notably: we
could use some kind of rollup; we could use some kind of zero-knowledge proof (ZKP) system; or
we could go in a more traditional layer-2 direction, such as state channels.

43 of 155

[git] = 43830880 = 2025-07-22

Term

Term

3.4 UTs: Dapp-chains

Design Position With regards to how we should actually design simplex-chains to best support
dapp-chains, there are a few important takeaways from the above. First, different dapp-chain
use-cases have different technical requirements; we don’t need a one-size-fits-all design. Second,
no PoS system is yet adapted for dapp-chain use, and if PoS is generally insecure then we cannot
assume secure PoS dapp-chains are possible. Third, scaling research (in a broad sense) is often
focused on methods that should be compatible with our dapp-chain design, so new methods may
become available at any point. Therefore, we should aim to support many different methods of
running dapp-chains and providing the necessary primitives for users to do so.

3.4.2 Three General Incentive Models for Dapp-chain Reflection

If dapp-chain headers are included alongside transactions in simplex-blocks, is it not the case that
both must pay some kind of transaction fee? If not, how are simplex-chain miners to prioritize what
to include in their blocks? Even if such a fee is not always necessary, the ability to provide a fee
has decisive advantages — like creating asymmetry between an attacker and honest simplex-chain
miners.

If it is possible to implement dapp-chains (or any system of child-chains) such that those chains
have freedom of protocol and freedom of incentivization whilst inheriting the parent-chain’s security,
then we should strive to achieve that.

Freedom of Incentivization: The property whereby child-chains have free choice of
incentive-system (i.e., the nature and dynamics of their root token, or lack thereof).

Freedom of Protocol: The property whereby child-chains have free choice of protocol
(including consensus mechanism, scripting, accounting methods, block structures, etc).

Section 2.4.2 details a conversion method whereby PoR is possible between chains using different
root tokens via a DEX. Could dapp-chains use a protocol-level DEX to abstract their protocol and
incentive method away from those of its parent-chain? Yes.

Is this required for this kind of abstraction? No.

Here are three methods of abstraction which maintain the above freedoms.

3.4.2.1 Method 1: Pay the simplex miner on the dapp-chain

In this method, the dapp-chain uses its root token to pay both the dapp-chain miner and the
simplex-chain miner (who includes the relevant dapp-chain header in their block).

Since all dapp-chain miners are required to run a full node of the parent-chain, this is trivial. In
essence, the host simplex-chain is a subset of the dapp-chain. Simplex-miners can run light clients*’
of the dapp-chain to regularly collect block-rewards.

A dapp-chain could, perhaps, have a rule like X root tokens are created as part of the coinbase
transaction and the miner of that dapp-block has free choice of the proportion of those which are
provided as a transaction fee to the host-miner.

Example use-case: an existing blockchain migrates to become an Amaroo dapp-chain.

3.4.2.2 Method 2: Pay the simplex miner via a native DEX

When a dapp-chain hosts a native DEX, it can use that DEX for PoR. The general case (where
a reflecting chain contributes far more chain-work than the reflected chain) was discussed in
Section 2.4.2.

40A simplex-miner could use other methods too, like maintaining full nodes of each dapp-chain and continuously
cycling through them (alternating which are running and which are not) to avoid massive computation requirements.
Light clients seem obviously preferable where possible.

44 of 155

[git] = 43830880 = 2025-07-22

3 UT;: CONSTRUCTING ULTRA TERMINUM

Cousider the limited context of a DEX with only one required trading pair (between the dapp-
chain’s root token and the ROO), combined with the security-contribution differential between a
simplex-chain and a dapp-chain. Note that a conservative implementation of a DEX between this
pair only relies on local state — that of the host simplex-chain and the dapp-chain, all of which is
accessible to dapp-chain full nodes. The simplest method of preventing market manipulation (that
might allow for some attack on the dapp-chain) is to calculate PoR weight via an old exchange rate
(e.g., from 24 hours ago), or to use an average over some period of time. Both of these ensure that
competition between blocks (at any given time) is not dependent on the current DEX execution.
With regards to dapp-chains using Proof of Reflection, this is sufficient.

Given a DEX, the dapp-chain can use this to automatically convert some of the mining reward to
the root token of the host simplex-chain. These rewards could accrue over time and be bundled
into far fewer transactions than would otherwise be necessary and automatically managed by the
DEX. Unlike the previous method, this method doesn’t require the simplex-chain miner to ever
interact with dapp-chains (besides including their header-transactions); however, the protocol is
more complex.

Example use-case: a greenfield dapp-chain uses an Amaroo-compatible DEX (which requires no
development effort) so that simplex-miners have lower operating costs; thus incenting simplex-miners
to include their headers over those of others.

3.4.2.3 Method 3: Pay the simplex miner directly

If the dapp-chain is willing to forego more efficient SPV transactions (or otherwise doesn’t require
them), and it is willing to bear the full burden of PoR in this context, then simply recording
the hash of a dapp-chain header might be sufficient. In such a case, transactions (in the style
of Bitcoin’s OP__ RETURN transaction format) provide everything required. This makes sense if
the dapp-chain has exceptionally large headers, or if the dapp-chain does not wish to disclose the
headers themselves (perhaps it is a private/permissioned network). In any case, since it is impossible
to stop users including hashes in transactions, this is always a method by which dapp-chains can
enable PoR with the host simplex-chain.

Example use-cases:
o An existing anchored*' blockchain migrates to become an Amaroo dapp-chain.

e A new (and ephemeral) dapp-chain is created to facilitate a national election that will result
in a 200 GB audit log (facilitating unprivileged verification of the election result) and a peak
votes-per-second over 10°. This demonstrates both freedom of incentivization (as there is
none) and freedom of protocol as no payments are made and no restriction is placed on the
nature of this dapp-chain’s payload.

3.4.3 PoS Dapp-chains

If the headers of dapp-chains are encoded as simplex-transactions, then techniques like slashing
can be first-class operations within the hybrid PoW context provided by the simplex. This solves
the Nothing at Stake and long-range problems for PoS dapp-chains, so long as the necessary PoS
primitives can be encoded in a simplex-transaction.

The abstraction layer between simplex-chains and dapp-chains brings practical benefits, too. For
example: existing (open-source) PoS blockchain schemes can be easily integrated as dapp-chains.
Given that dapp-chains inherit security properties of their parent-chain (via one-way PoR), if such
a dapp-chain’s consensus method supports other features — e.g., finality guarantees — we should
get those features for free. (Sharding, too, for that matter...)

41 Anchoring: The process by which the hash of some data (perhaps a secondary chain’s blocks) is included in
transactions of a primary blockchain (e.g., Bitcoin). Anchoring would be a progenitor to PoR, except that I believe
the idea of an on-chain light client predates the term anchoring. Though I think that the idea of time-stamping a
hash (e.g., via an OP_ RETURN transaction on Bitcoin) predates the idea of an on-chain light client.

45 of 155

[git] = 43830880 = 2025-07-22

https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://www.reddit.com/r/Bitcoin/comments/5xkvc1/psa_were_running_a_stress_test_of_our_blockchain/
https://github.com/XertroV/coppr/blob/master/chainheaders.py

3.4 UTs: Dapp-chains

The most likely method of integration has three core components: modification of the headers
(and integration of PoR), modification of existing slashing protocols, and support for intra-simplex
SPV proofs. For example: OpenEthereum (Parity; 2022) *? could be integrated as a dapp-chain
with the creation of a new header format, the creation or modification of a suitable engine, and
the implementation of suitable builtins that facilitate intra-simplex SPV proofs*® and any other
useful features. Naturally, there are some other components that are necessary (like a component
for broadcasting header-transactions), but those components are common over many dapp-chain
integrations and only need to be written once for each kind of dapp-chain.

3.4.4 Going Further

There are two more ideas we’ll explore a little in this section: dapp-chain simplexes and dapp-
dapp-chains. Both of these are somewhat speculative, in the sense that we’re adding more and
more assumptions and should thus be somewhat conservative in our conclusions. However, if these
techniques can be done practically and securely, then they will give us some nice features.

3.4.4.1 Dapp-chain Simplexes

Say we have a simplex with a reasonable number of dapp-chains — enough that we’re interested in
increasing the efficiency of communication between them. Currently, the worst case situation for
moving something (tokens, information, permissions, whatever) from one dapp-chain (D, hosted
on L) to another (Dg on R) involves at least three transactions: D, — L — R — Dg. If we are
just proving something to Dg, we can (at least) do this in one transaction, but we still need to
prove both that some block on D,, is valid and that some state entries have some particular values.
(The proofs for L and R blocks, and the relevant PoRs, are left as implicit since all full nodes have
those already.)

If a path between two dapp-chains is common enough, is there any way to make this process more
efficient? Yes: dapp-chain simplexes.

The simpler case is when all the dapp-chains are on the same simplex-chain. In this case, the
dapp-level simplex’s PoRs can be verified by the host simplex-chain, and we should gain some of
the properties that the main simplex enjoys.** Participating dapp-chains would know the chain-tips
for all the other participating dapp-chains, so SPV-esq proofs between those chains are roughly
halved in size.

The more complex case is a dapp-chain simplex where the dapp-chains are hosted on different
simplex-chains. Enforcing this at the simplex-level would require some additional protocol support
— the host chain would need to verify something that depends on another simplex-chain. As we’ll
see in Section 4 (particularly Section 4.11), this kind of thing can be done without breaking O(c)
constraints. This does not, however, mean that we can have an unlimited number of dapp-chain
simplexes that span multiple simplex chains. If we tried that, we’'d find that a fully validating
simplex-chain node would need to follow O(c¢) many dapp-chain simplexes, each of which has O(c)
many chains, resulting in an overall load of O(c?).

So, in conclusion, dapp-chain simplexes are possibly useful but should be considered on a case-by-case
basis until we have a better understanding of them.
3.4.4.2 UTj;: Dapp-dapp-chains

Let’s assume for a moment that there exists a feature-complete, production-ready, open source,
sharded PoS blockchain. It’s out there, in the wild, chugging away processing O(c?) many transac-
tions.

420penEthereum itself has, since this section was written, been deprecated. This section is left unchanged since
the specific client we might modify is immaterial to the main point: that relatively few modifications can be applied
to existing clients to create a dapp-chain version of that kind of blockchain.

43Note: instead of builtins, these requirements could be met via EVM/WASM smart contracts.

44These properties (of the main simplex) are explored in-depth in Section 4. Exactly which properties are gained
in which contexts will be left for future research, but I'd expect there to be benefits around censorship resistance,
reduced proof sizes, DoS mitigation, and more.

46 of 155

[git] = 43830880 = 2025-07-22

https://github.com/openethereum/openethereum
https://github.com/openethereum/openethereum/blob/582bca385fedb1af682e989e5bcc6b3b2cf53028/crates/ethcore/types/src/header.rs
https://github.com/openethereum/openethereum/blob/582bca385fedb1af682e989e5bcc6b3b2cf53028/crates/ethcore/src/engines/basic_authority.rs
https://github.com/openethereum/openethereum/blob/582bca385fedb1af682e989e5bcc6b3b2cf53028/crates/vm/builtin/src/lib.rs

3 UT;: CONSTRUCTING ULTRA TERMINUM

Given that we just discussed how existing blockchain clients can be modified to run as dapp-chains
on the simplex, what, in principle, is stopping us from using the same techniques with this sharded
PoS chain? If the answer is nothing, then it’s self-evident that this is a path to take UT from O(c?)
capacity to O(c*) capacity — that is, UTy — UT3. There may, of course, be more adjustments
that need to be made depending on the PoS protocol. But, if the protocol is secure in isolation,
then it’s hard to see how adding thermodynamic security via one-way PoR with a simplex-chain
would necessarily be somehow incompatible or problematic. In general, if some O(c*) scaling
method works for a traditional blockchain, then combining it with UT results in an O(c?>T®) scalable
network.

It’s worth noting that this technique only works in one direction: UT can accommodate other chains
(as dapp-chains), but other chains cannot accommodate UT in the same way. If a sharded chain
were adapted such that each shard were part of a simplex, then either overall capacity decreases
due to PoR overhead, or the chain hosting the shards is redundant and we just end up with an
implementation of UT. This is yet another asymmetry between UT and traditional blockchains.

47 of 155

[git] = 43830880 = 2025-07-22

4 Practical Considerations for UT’s Design

4.1 The Availability of Reflected Blocks

What happens if a chain reflects a valid block that is not available? Could an attacker use this to
their advantage?

For example, consider the following situation (Figure 15). L and R are two mutually reflecting
chains, and the most recently produced block is L;, which reflected Rj. Next, a malicious R miner
produces a valid block (Ry41,) which reflects L;. That miner broadcasts the header of Riy1, along
with a PoR branch proving that L; was reflected, but does not broadcast the rest of the block. The
L miners receive the header and PoR branch, and shortly thereafter an L miner produces L; 41,
which reflects Ry14. Since other (honest) R miners cannot build on Rj1,, they must work on
the draft block Ry instead. Note that, although Ry will almost certainly reflect L;, whether it
reflects L;y1 is at the miner’s discretion.

Chain L <<

Chain R %\ ER;H]
Unavailable

Time

Figure 15: Chain-segments showing an unavailable R block that was reflected anyway. The dashed
frame of Ryy1 indicates that it is a draft block (i.e., not yet mined, but being actively worked on
by miners). Note: Ry reflects L;;1 at the miner’s discretion — it is optional.

The attacker can use this situation to their advantage if Ryy1, has precedence over Ry11 (i.e., it’s
favored by the fork-rule). In that case, the attacker can publish Ryy1, after Rp41 is mined for an
advantage.’> When does this case occur?

If Rj41 does not reflect L;11, then Ry4q will claim the same chain-weight as Ry41,. However,
Ry114 is favored over Ry since the PoR via L;;; contributes weight to Ri11, (as discussed in
Section 2.7). So the attacker always has the advantage if Ri11 does not reflect L; ;1.

If Riy1 does reflect L;y 1, then Ry11, is implied as an earlier block, so should have precedence.

Both these situations make sense: sometimes two R blocks will be created near-simultaneously, and
occasionally only one of those blocks will be reflected by an L block. In those naturally arising
cases, we'd expect the reflected block (Rg41, in this case) to take precedence. Either because it was
reflected when Rj.; wasn’t, or because, for Ry to reflect L; 1, Riy1, must have existed first.

So, we seem to have a problem: on the one hand, an attacker could withhold a block (but not the
header or PoRs) to gain some advantage; on the other hand, prioritizing the earlier block seems to
be necessary and correct behavior when this situation arises naturally.

The only difference between these two situations is whether Ry, 1, is available or not; so this will
be our discriminating factor.

Can R miners do anything to prevent L miners reflecting Ry1, before the block body is released?
The R miners can’t prevent a withheld R block from being produced or reflected, but, R miners
can still influence L miners’ choice to reflect Ryy1, (and withheld blocks in general). L miners
want their blocks to be reflected by R miners so that future L blocks will build on top of theirs.
So R miners could refuse to reflect some L blocks — particularly, L blocks that reflect R block
headers without a known body (such as Ryt14).

45This is similar to the selfish mining attack published in Majority is not Enough: Bitcoin Mining is Vulnerable
(Eyal, Sirer; 2013). It could also be chained to effect a doublespend.

48 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20240927042356/https://gateway.pinata.cloud/ipfs/QmNukb1L8BhEsiCbrmnkEJWAvUjhBHidinKMZKfCaLG6ep
https://web.archive.org/web/20240927042356/https://gateway.pinata.cloud/ipfs/QmNukb1L8BhEsiCbrmnkEJWAvUjhBHidinKMZKfCaLG6ep

Axiom

Term

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Since L miners face the same problem (withheld but reflected L blocks), both L and R miners are
incentivized to cooperate. This forms a stable equilibrium provided that the honest miners have
excess bandwidth and that the attacker has less than half the combined (post-conversion) hash-rate.

Another way to look at this is that PoR only works when all blocks are available. This isn’t
surprising because blockchains generally only work when all (canonical) blocks are available. Since
miners only want to participate in systems that work (how else would they earn income?), they will
adopt the practices required to make the system work.

4.1.1 The Axiom of Availability

To codify this as a foundation of UT, we will introduce the first network aziom: the Axiom of
Availability.

Axiom of Availability

Principle: All reflected blocks must be verifiably complete and readily available.

Predicate: A block, L;, cannot yet be valid unless, for each reflected block Ry:
i. Ry has been downloaded (i.e., the block is available); and
ii. the cryptographic integrity of Ry has been verified; and
iii. Ry is valid under this axiom.

Axiom: Network axioms are foundational rules expressed as a principle and predicate.
Consensus-forming nodes must adhere to them. See definitions: Availability, Maximal
Reflection, Unified Ancestry.

4.1.2 Bandwidth Requirements

In the case of just two chains, the bandwidth requirements for L miners are approximately
doubled, but the storage and computational requirements are not. While there is some storage
and computational overhead on the part of reflected R blocks, these are close-to-negligible when
compared to the mined chains: miners need only to store recent R blocks and verify that they are
structurally valid. While this is technically an O(c) computational load per block (since blocks are
O(c) bytes large), practically this load is far smaller than the O(c) load of fully processing a block,
so we can treat it as a constant overhead (O(1)). Since only recent blocks are stored, the storage
requirements are also O(1).

If there are O(c) many chains, then requirements are: O(c?) for bandwidth, O(c) for storage, and
O(c) for computation. As we will see in Section 5.8, the practical bandwidth requirements are
acceptable (on the order of 1 MB/s or s0*®). Assuming that holds true, we can conclude that the
Axiom of Availability is not a bottleneck for scalability.

See Section 5.8 for a deeper discussion of bandwidth complexity.

4.2 Proving Reflection

If simplex-chains’ consensus protocols require accounting for reflected work, then nodes must have
some method whereby they know which work (in a particular chain’s history) has been reflected.
That is: a node for chain L must be able to answer the question For each other simplex-chain,
which blocks in chain L’s history have been reflected? This means that each node must have Ny — 1
answers, per block, for a simplex of Ny chains.

There is a trivial method: with each header, include the corresponding merkle branch which proves
reflection. Specifically: when a miner on chain L mines a block that includes a header from chain

46 A rule of thumb: 1 MB/s here corresponds to 1,000-4,000 TPS. Also note that this is only a requirement for
miners and full nodes after a desired chain has been fully synchronized.

49 of 155

[git] = 43830880 = 2025-07-22

Term

Term

Quote

4.3 Segmented State

R, they should also include — alongside the header — a merkle branch that shows the most recent
chain L ancestor that has been reflected by chain R. For example, block By, ;41 might include a
proof that Hy, ; was reflected by Br ;. That branch is the only required branch (i.e., the missing
branch), as chain L nodes are already aware whether Hp ; was reflected by By, ;11.

Miners would need to do this for all simplex-chains that they reflect. Predictably, this has overhead
with order O(Ny - log, N1), where N; is the number of chains in the simplex. This method has
complexity O(c - log, ¢) which is discussed in Section 5.6.2.

Explicit Proofs (+PoRs): The UT protocol variant wherein miners/validators explicitly
record both reflected headers and the single missing merkle branch required to prove reflection.

Do we need to include proofs of reflection, though? Is it possible to avoid the explicit inclusion of
those proofs, potentially allowing for O(c¢) complexity instead?

If miners of any simplex-chain download the blocks of all simplex-chains — as mentioned in
Section 4.1 — then including all necessary proofs of reflection can be made redundant. Since
miners, theoretically, have all the necessary data to construct the proofs, do those miners need to
actually include those proofs? Could we treat those proofs as witnesses and prune them — similar
to Segregated Witness (SegWit)*"?

Omitted Proofs (+OP): The UT protocol variant wherein miners/validators explicitly
transmit only the reflected header component of PoRs, such that necessary proofs of reflection
themselves are deterministically recalculable.

There would be some downsides to omitting the proofs of reflection. For one, it would mean that
simplex-chain nodes of a single chain, during an initial sync, would not be able to verify the PoRs
without auxiliary data — potentially a lot. Secondly, it would mean that miners must track the
state of all reflections in the simplex for some period of time so that they ensure the integrity of the
reflection protocol. Although, given the Axiom of Availability, this is possible without significant
overhead.

A practical method for treating proofs of reflection as witnesses that may be excluded/pruned is
discussed in Section 4.3.

4.3 Segmented State

Traditionally, blockchain protocols have some global state and a state-transition function. For
example, the Ethereum Yellow Paper says:

Ethereum, taken as a whole, can be viewed as a transaction-based state machine: we begin
with a genesis state and incrementally execute transactions to morph it into some current
state. It is this current state which we accept as the canonical “version” of the world of
Ethereum.

A valid state transition is one which comes about through a transaction. Formally:

ot11 = Y(o, T)

where Y is the Ethereum state transition function.

— Dr. Gavin Wood; Ethereum Yellow Paper / Petersburg Version 41c1837, s2

4TSegregated Witness was a new “witness” structure introduced to bitcoin blocks, separate from the transaction
merkle tree. The structure contains data required to check transaction validity but not required to determine the
transaction effects. Introduced with BIP-141.

50 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20240927042236/https://gateway.pinata.cloud/ipfs/QmcdwaEqKjsASs1sZqxBNPw5vmypE5YL61zSvWdGoX7wtC
https://web.archive.org/web/20240926154239/https://en.bitcoin.it/wiki/Segregated_Witness
https://web.archive.org/web/20240423183945/https://en.bitcoin.it/wiki/BIP_0141

Term

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

One of the reasons for this tradition is that transactions are (typically) permitted to depend on
any part of the global state. For example: a Bitcoin transaction is permitted to spend any UTXO,
and an Ethereum smart contract may interact with any other smart contract on the Ethereum
blockchain.

However, it is not necessary for a protocol to allow any and all transactions to depend on global
state. A protocol could specify that certain transactions may depend only on a strictly defined
subset of global state, i.e., a well defined segment of global state that is independently calculable.

Simplex-chains can use this technique to their advantage by segmenting both transactions and state
which are specific to Proof of Reflection. That way, the state of a simplex-chain’s reflections can be
calculated without needing to calculate the remaining state for that simplex-chain.

We could specify the state-transition of simplex-chains (using Ethereum’s nomenclature) like this:

ort+1 = Yr(oR:, T) (26)

Oupr1 = Yulore + 0,0, T)
Where, at some time ¢: o is the segment of state that is tracking reflections and headers; o, ; is the
global state excluding or: T g is the state-transition function for the reflections segment; and T,
is the state transition function for all remaining segments. Note that if T is a reflection-transaction
(i.e., it contains headers to be reflected) then Y, does nothing, and if T is any other type of
transaction then T r does nothing.

In essence Equation 26 shows that or; depends only on the og 1 state-segment and the current
transaction, whereas o, ; depends on global state.

If simplex-chains are segmented in this manner, then miners will be able to calculate the reflection-
state of other simplex-chains without calculating their complete state. This would allow them to
deterministically calculate proofs of reflection for all other simplex-chains.

4.4 Exploiting Segmented State

Given that the reflection-segments of simplex-chains will contain mostly redundant data (i.e.,
headers), numerous optimizations are possible.

For example, it’s not necessary for a miner’s node to re-download reflected headers (which are part
of other chains’ blocks), since it can download them in advance and as they become available. We
can reconstruct the PoRs root, provided that we know which headers are reflected and in what
order. Transmitting the hashes of headers, only, reduces the effective size of simplex-blocks*® from
b to ~b- (9;'33’1), where g is the size of the relevant digest in bytes. For g = 32; B, = 112, this
reduces effective block size to ~0.643b — an improvement of ~35%.

However, instead of using that technique to minimize bandwidth we could instead use it to maximize
the number of simplex-chains. If simplex-blocks dedicate 1/2 of their capacity to reflections, and
assuming +OP, then we can reduce that burden by 1 — 32/, =~ 70%, or we could increase the
capacity for reflections by Br/32 = 300%!

Header Omission (+HO): The UT protocol variant wherein miners/validators explicitly
record only the hashes of reflected headers. A requirement is that block producers must
eagerly download the headers of all simplex-chains and deterministically recalculate the
relevant Proofs of Reflection.

We have just reached the +HO variant via omitting proofs (+OP). This time, however, it is not the
proofs that are redundant, but the headers.

Does header omission with explicit proofs provide any advantages? Yes, in some cases.

48 Assuming those blocks dedicate 50% capacity to transactions, and 50% to reflected headers (without PoRs).

51 of 155

[git] = 43830880 = 2025-07-22

Warning

4.4 Exploiting Segmented State

Particularly, if miners include only the single missing merkle branch associated with each necessary
PoR, then no additional information is required besides the header itself. Headers are trivial to
acquire from the network, and each only needs to be acquired once, regardless of the number of
PoRs it is a part of. Since the hash of each header is part of the missing PoR merkle branch, miners
only need to provide an ordered list of merkle branches for full PoR verifiability. Additionally, these
merkle branches will be part of specific SPV proofs, so that when a cross-chain SPV transaction
(which uses those branches) is made, it can omit those parts of the proof (replacing them with a
pointer).

This UT protocol variant is +HOPoRs: the combination of header omission (+HO) and explicit
proofs (+PoRs). It may present decisive advantages for implementations of simplex tilings (which
are introduced in Section 6).

4.4.1 Hash Compression & Truncation

The following applies to PoW chains with compatible header PoW-hashing algorithms.

Consider a fairly normal PoW chain, in that the PoW algorithm compares the hashes of headers as
a number with a target. That is, the output hash has a bunch of zero digits at one end (or can be
losslessly converted into such a form). For simplicity, we’ll assume that the zero digits are the most
significant and are leading (and the least significant bits are trailing).

When we serialize this hash as a binary string, there is a trivial compression method. Since we know
that one end of the hash has multiple zero bytes, we can replace this substring with the number of
zero bytes replaced.”’

This reduces the length of the hash (in bytes) from g to g — z + 1 (z being the number of zero
bytes), however, the security of the hash is still 8¢ bits. This is a limited form of hash compression.
In a mature network using +HO, reducing hash length by ~1/4 is possible, corresponding to an
increase in maximum capacity of ~1/3 or so.

This kind of compression is possible (and valuable) because the hashes are laden with special
properties by the PoW algorithm. There are two main properties we are concerned with. The first
is that better header hashes, interpreted as numbers, are smaller. The second is subtle.

Consider a mature, healthy PoW chain, like Bitcoin. The proofs of work produced by such a chain
are, through market feedback mechanisms, the best proofs of work that the market as a whole
(i.e., the global economy) is capable of producing profitably. Therefore, the proofs of work are an
approximate measure of the global capacity for hashing. More specifically, the number of leading
zero-bits loosely encodes humanity’s collective ability to produce arbitrary partial collisions via
brute force. For example, Bitcoin block 879,273 has a difficulty around 1.1 x 104, corresponding
to at least 78 leading zero-bits.”Y Given Bitcoin produces around 52600 blocks per year (and all
else being equal), we can expect the best block hash produced in the last year to have around
78 + log,(52600) ~ 94 leading zero-bits. Practically speaking, all the silicon in the world working
for a year, singularly, on finding a partial SHA256 collision would not do much better than 94 bits.
We can be confident in this particular prediction because the market for Bitcoin ASICs is mature —
those ASICs use the latest fabrication processes, are numerous enough, and are orders of magnitude
more efficient than general processors (CPUs, GPUs, etc). For less mature networks, or networks
using algorithms that benefit less from ASICs, the difference will be greater and more dependent
on external compute resources which are not reflected in the PoW difficulty. But, provided that
g > 2z, this does not present an issue — the low value of z means we have more buffer until we
pass the insecurity breakpoint, so these two forces roughly cancel out in all but extreme cases.

We will make use of this second property, that the leading zero-bits are related to the global hashing
capacity, to justify the safety of hash truncation as an optimization.

49Gince we're now dealing with a variable length byte-string, a typical encoding scheme would prefix this with the
length of the bytes. From this we can recover the number of zero bytes, so we don’t need to explicitly encode it.
50The block itself had 81 leading zero-bits.

52 of 155

[git] = 43830880 = 2025-07-22

Term

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Hash Truncation (+T): The UT protocol variant wherein miners/validators refer to
reflected headers using only the least significant half of the hash. This effectively halves the
hash size in throughput calculations for +OP and +HO variants.

The idea behind 4T is that the security of a truncated hash in bits, assuming g > 2z, is given
by 8(9/2 + 2)°!, and that this is always sufficient, given that z is intimately related to the largest
reasonable attack that we could expect at that moment. The g > 2z condition is there for two
reasons. First, if 2z > g then the security of the truncated hash is just 8¢ bits, like normal. Second,
using significantly more than half the hash for PoW is problematic because the chance of collisions
between valid headers increases dramatically. So, intuitively, there is some breakpoint that we cross
as the bits used for PoW increases. Crossing that breakpoint indicates that the hash is no longer
suitable for use in PoW — we’ve “maxed it out” and need a hash with more bits, or a hash that is
harder to generate (or slower, etc). Therefore, there is also some similar and related breakpoint
where the safety of hash truncation degrades. Perhaps it does not degrade completely, but at
least enough that partial collisions (without the required PoW) of the least significant bits become
practical to generate. Even though this shouldn’t cause an issue for full and rigorous validation, it
might open up DoS vectors, or other unforeseen exploits associated with optimizations or software
patterns that might otherwise be safe. Treating that breakpoint as g ~ 2z should provide us a
reasonable safety margin to avoid such issues — if we get close to it, it’s time to change the hash.

Combining +HO and +T gives us +HOT, the highest capacity variant of UT;. In this configuration:
headers are smaller, the information required for PoR regeneration is minimal, and the number of
chains per simplex within given constraints is maximal. Since +T halves the effective hash length
(which is all the data in the PoRs half of the block), the overall simplex capacity increases 2x.

Conservative

~

UT+P0RS E— UT+OP

NN

UT+P0RTS ? UT+OPT

UT nopors — | — UT4no

N o~

UT noprorts — UTtmor

A

Maximal TPS

Figure 16: Possible upgrade paths between UT variants, starting at UT {pors in the top left — the
most conservative variant. Solid arrows show paths of increasing capacity.

4.5 Stateless Full Nodes and Fraud Proofs

A stateless full node (a.k.a. a stateless client) is a node that verifies all blocks, but does not actively
track the current state of the chain. Instead, a stateless full node will use some minimal witness
data (specific to each block) to verify that the state transition was valid. This is possible because
most of the state tree remains untouched and thus the state root can be recalculated easily. The
mutations to the state tree made by a block’s transactions are all calculable from the witness data

51T use g here, even though it’s measured in bytes, for consistency with the rest of the whitepaper. A more rigorous
method would measure everything in bits instead, and avoid the somewhat awkward multiplication by 8, but it’s not
important for this discussion.

53 of 155

[git] = 43830880 = 2025-07-22

Aside

Term

4.6 The PoR Graph

and the transactions, alone. In other words: the prior state root, the witness data, and the full
block are all that is required to calculate the output state root of that block.

We won'’t focus too much on the specifics of stateless nodes here, since there are many existing
resources’” on the topic. Note that some stateless node designs require that each individual
transaction include appropriate witnesses, rather than each block having a combined witness.
Although we will design a method that supports transaction witnesses, we won’t require that
transactions include them.

Supporting stateless nodes introduces some constraints on the cryptographic design of state and
blocks. Updates to the state tree must be computationally efficient — something like O(logm)
complexity for m total state elements. Practically, it appears that this requires using an append
ounly structure (e.g., a Merkle Mountain Range (Peter Todd; 2018)), or some kind of merklized
prefix tree (e.g., a Merklix tree (deadalnix; 2016)). Additionally, headers should®® commit to the
state root, too, so that witnesses for individual transactions are minimal.

This is a good start, and we can now produce witnesses for each transaction.

However, the witness associated with a transaction before it is confirmed will rarely be the same as
the witness after it is confirmed. The before-witness will prove some state against the prior block’s
state root. However, the state is almost always mutated before a transaction is executed — the
state root is different. The after-witness should use, instead of the state root of the prior block, the
root of the intermediate state immediately prior to the execution of that transaction. This way,
the headers-only chain, the after-witness, and the transaction are the only data required to verify
the validity of the transaction (assuming that the merkle proof of the transaction in the block also
includes the intermediate state roots directly before and after the a transaction).

Why does this after-witness matter so much? Because it is the fraud proof for any fraudulent
transaction.

Fraud Proof: Cryptographic evidence that a transaction, block, or state transition was
incorrect.

We do, however, need to ensure these mid-state roots are also recorded in the block. Typically,
a block will commit to its transactions via something like the root of a merkle tree of those
transactions. We can trivially modify this design by replacing each leaf with the corresponding
{mid-state root, transaction} pair. Thus, if a block is invalid due to containing a fraudulent or
otherwise invalid transaction, the fraud proof for that block consists of: the merkle branch proving
the {mid-state root, transaction} pair, the pair itself, and the witness data for that transaction
matching the mid-state root.

Additionally, such fraud proofs are all but automatically generated by full nodes during block
verification — the witness data is exactly those state entries that the node requires to validate
the transaction. In some cases, the witness data may not even be required if, for example, the
transaction has an invalid signature. We could even optimize certain cases to reduce witness sizes
by showing only the minimal data to prove that a particular condition was violated.

4.6 The PoR Graph

As a simplex ages, a complex graph of PoRs is produced (and it is a DAG). Each vertex represents
a block in some simplex-chain, and the outgoing edges point to reflected blocks. An example section
of a simulated PoR graph is shown in Figure 17.

528ee: Stateless Full Node (Zack Hess), The Stateless Client Concept (V. Buterin), Making UTXO Set Growth
Irrelevant With Low-Latency Delayed TXO Commitments (Peter Todd).

53This isn’t strictly necessary — it could be recorded elsewhere in a block, e.g., the coinbase transaction. However,
in that case, the effective header size becomes the actual header, plus the branch to the coinbase tx, plus the coinbase
tx. Committing elsewhere in the block doesn’t have any overhead for stateless full nodes (since they have the full
block data, anyway), but it does increase witness sizes for individual transactions.

54 of 155

[git] = 43830880 = 2025-07-22

https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://web.archive.org/web/20160928121722/http://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-steroid
https://web.archive.org/web/20210523201110/https://github.com/zack-bitcoin/amoveo-docs/blob/master/design/stateless_full_node.md
https://web.archive.org/web/20210602053116/https://ethresear.ch/t/the-stateless-client-concept/172
https://web.archive.org/web/20210224050038/https://petertodd.org/2016/delayed-txo-commitments
https://web.archive.org/web/20210224050038/https://petertodd.org/2016/delayed-txo-commitments

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

D—00—0—

'Q///,F D\r \ ‘ |

{l

\ W

— Q00— 0«—0—0—0

Time

Figure 17: A simulated PoR graph of a 9-simplex over ~10 block periods. Approximately 900
reflections are shown. Opaque horizontal arrows point from child to parent, and the semitransparent
arrows point to reflected blocks.

Since there are Nj chains, and each block has ~N;j reflections on average, the total number of
reflections, per block period, is ~N;2 = O(c?). Does this present a problem for fully validating
nodes that wish to verify the entire PoR graph?

Recall that in Section 4.4, we took advantage of redundant data within the PoR graph. Particularly
that, provided we knew which blocks were reflected and the ordering used to create the PoRs root,
we could deterministically reconstruct those parts of any simplex-chain block. However, this relied
on either tracking the entire PoR graph, or additionally downloading all missing merkle branches
corresponding to PoRs used by the reflected block.

Why is so much information required? The reason is that each miner can choose whether to reflect
any remote block (assuming that the block is available), and has freedom to choose the position of
each reflected block in the merkle tree of PoRs.

Regarding the position of reflected blocks — this is easy to solve. All we need to do is ensure there
is only one position that a block can be in. For example, we could require that reflected blocks are
ordered based on the ordering of their genesis blocks (which is fixed). If two or more blocks from
a single simplex-chain are reflected, we can use a sub-ordering method (of which there are many
options). This gives us a total ordering, meaning that we only need to know which blocks were
reflected to reconstruct this segment of a block. Alternatively, we could use a merklized prefix tree
which achieves the same goal. Either way, we have reduced the required information from a list of
block hashes to a set of them.

It is clear that miners need some freedom to choose whether to reflect a block or not. For one,
miners must be able to choose to reflect new blocks as they appear. Additionally, due to the Axiom
of Availability, miners must not reflect unavailable blocks, even if a valid PoR can be generated.
However, because all honest miners obey the Axiom of Availability, there is never a reason for an
honest miner not to reflect a block that is available — doing so will always increase the overall
chain-weight of that miner’s draft block.

So, if an honest miner’s block, L;, reflects some block, Ry, then any block reflected by Ry must
also be available (since the Axiom of Availability is recursive). If a block is available then a PoR is
possible. Therefore, an honest miner should reflect all non-local blocks that were reflected by Ry
but have not already been reflected by an ancestor of L;.

55 of 155

[git] = 43830880 = 2025-07-22

4.6 The PoR Graph

Let’s call this a state of maximal reflection, and say that such a PoR graph is mazimally reflective.

4.6.1 Maximally Reflective PoR Graphs

Specifically, we can say this about any PoR graph in a state of maximal reflection: for every block
L;, and for every block Ry, reflected by L;, then every block b that is reflected by Rj satisfies one
of: b is reflected by L;; or b was reflected by an ancestor of L;; or b is an ancestor of Lj;.

Notice that, if L; reflected any blocks, there will always be at least one block that was reflected by
L; that was not reflected by any other block that was reflected by L;. Let us call these blocks the
tips of the PoR graph from L;’s perspective. PoR graph tips might reflect other blocks reflected by
L;, too.

For example, consider this PoR graph segment between 3 chains L, @, and R:

Y.

Time

Here, L; reflects both @; and Ry, and @; also reflects R;. Thus, from L;’s perspective, Q; is a
graph tip; and, from Q);’s perspective, Ry, is a graph tip.

Starting from L;_1, we could completely describe this section like so:
e Ry reflects L;_1; and
o Qj reflects {Ry, L;—1}; and
o L; reflects {Q;, Ri}.

If the PoR graph is not maximally reflective, then we must specify the complete set of reflections
for each block. However, when maximally reflective, most of that information is redundant (about
half in this example).

We do still need some information for each block, however, we can recreate the full PoR segment
with less information — some of the reflections are implied and can be omitted:

o the PoR graph segment is maximally reflective; and

e Ry reflects the tip L;_1; and

o (); reflects the tip Ry; and

o L; reflects the tip @;.

We can see that the maximally reflective quality has at least two important properties. Firstly:
we have drastically® reduced the amount of information needed to completely describe the graph
segment: O(c?) — ~O(c) — an example is shown in Figure 18. Secondly: the PoR graph, according
to each chain, converges into a single, consistent PoR graph. In essence, any block in a maximally
reflective PoR graph shares a common history with all prior blocks in the graph.

Is there an intuitive explanation for the reduction in complexity of the PoR graph? Yes. To start
with, let us assume that there is no propagation delay — i.e., all miners instantly receive, validate,
and incorporate all blocks into the PoR graphs of their draft blocks. In this case, no blocks are ever
mined simultaneously, and so each block will reflect exactly one PoR graph tip. Since there are
O(c) many chains, and we need to add O(1) extra information per header (the reflected tip), this is
O(c) extra information all up.

In practice, blocks will sometimes be mined simultaneously. So, even if most of the time a block
only reflects one tip, some of the time that block will reflect multiple tips. The frequency of
simultaneous blocks is dependent on the number of chains (N;), the block frequency of each chain

54The theoretical overhead is still O(c) per block, but practically we expect the overhead to be a similar size to
the header which is O(1). It’s explained shortly.

56 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

0 @) -O—
) e %
D 0 R
& iR, Sl TN
O H : — 2 O«
AW 0
0% 0
B s
0+—0
N
0
Time

Figure 18: This demonstrates how maximally reflective PoR graph segments with O(c¢) many chains
can be described using ~O(c) information. Thick dotted arrows represent reflections of PoR graph
tips, and semitransparent arrows show other reflections — these reflections and implied via the
reflection of the graph tips. This also shows that the DAG of tip-reflections is the longest path of
reflections between two blocks.

(By), and some average propagation” delay (¢ seconds). Two blocks are simultaneous if they are
mined within ~¢ seconds of each other. In the ¢ seconds before that most recent tip was mined,
we expect that ~N; B¢ other tips were mined (from any simplex-chain). Unless a block contains
no reflections (which happens with probability 1 — Nl_l), it must reflect at least one graph tip. So,
we expect each block to reflect 1 + Ny By¢ tips. For Ny = 100, By = 1/15,¢ = 1, we expect each
block to be simultaneous with ~7 others, and each block to reflect 8 graph tips on average.

Therefore, the overhead to reconstruct the PoR graph — and every PoR segment of every simplex-
chain block — is, on average, g(1 + N1Bs¢) bytes per block, where g is the length of a hash. As g,
1, and By are constants, and if we treat ¢ as constant, the overhead thus has complexity O(c) per
simplez-chain. Since we're tracking O(c) chains, the overall load is O(c?).

The total bandwidth required to track the PoR graph (excluding verifying the availability of blocks)
is: the overhead per block, plus the block header, all multiplied by the network-wide blocks per
second rate. Thus, the total bandwidth is N1By(Bp, + g(1 + N1By¢)) B/s — which is O(c?).

However, we estimated before that we should expect to require 7 graph tips on average per block
(which seems much less than O(c)). Practically speaking, the overhead is only significant when
the header size is much smaller than the overhead: Bj, < g(1 + N1Bjs¢). If we plug in our rough
numbers from before, we find ¢g(1 + N1Bs¢) ~ 250 =~ 2B, = O(1).

There 4s a practical limit (depending on By¢) for how large N; can grow before this overhead is non-
negligible. Howewver, if we capped the expected overhead to, say, 256 bytes — g(1 + N1Bs¢) < 256
— then we find Ny < 7(By¢p)~! ~ 105-¢~!. Capping the overhead to 128 bytes yields N1 < 45-¢~ 1.
Note that maximal values of N; are inversely proportional to By, so modifying By doesn’t change
the expected overhead.

4.6.2 Optimization or Contradiction?

We calculated the overhead to be g(1 + N1By¢) = O(c) — this is because we assumed that
O(By¢) = O(1). However, if this were really the case, we should be able to optimize the PoR

55In particular, we are concerned with propagation between miners, not the network as a whole.

57 of 155

[git] = 43830880 = 2025-07-22

Aside

4.6 The PoR Graph

sections of blocks (similar to Section 4.4).

We could try to design the protocol like this: instead of recording all reflections, each block records
only the minimum necessary to reconstruct the PoR graph. This would increase the overall bandwidth
required to track the PoR graph, but our expression remains the same: N1By(By, + g(1+ N1By¢)).

Since the overhead is O(c), and recording all reflections is also O(c), can we swap in this new
process to increase scalability?

The old PoR sub-block takes up N1Bya B/s of capacity (where « represents the bytes per reflected
simplex-chain and « € [16, 512]).

The new PoR sub-block instead takes up By - g(1 + N1By¢) B/s of capacity — we exclude the
block’s header since that’s already part of the block. If k1 p B/s of a chain’s capacity is dedicated
to reflections, then we have:

kl,B = Bfg(l + Nle¢)

N, = ;ﬂb(lg}’z - 1) (27)

Setting k1,5 = 1,500 B/s and evaluating yields N7 ~ 10,500 - ¢~ .

Of course, ten thousand chains is a lot, and full tracking the PoR graph would require ~15 MB/s of
bandwidth and around 500 TB of storage per year. Each block would reflect, on average, 10k other
blocks. Every block period, keeping up with the PoR graph would require calculating 10k PoRs
roots — although there are significant optimizations to avoid recalculating these from scratch.

I don’t know about you, but I'm getting the suspicion that this isn’t really an O(c) load.

Since this conflicts with our notion of an O(c) load, let’s examine one of our premises: that
O(N1Bj¢) = O(c). Certainly O(N1) = O(c), and O(By) = O(1), but does O(¢) = O(1)?

There is a good reason to think O(¢) = O(1). At some point, propagation delay is limited by the
speed of light. So latency must have a definite minimum, which is a constant.

However, the physical limits on latency do not dominate real-world latency yet. Near-future
networking technologies, like LEO satellite constellations, will reduce latencies over significant
distances. Moreover, even as the best-case minimum latency approaches physical limits, technology
will continue to improve latency in bandwidth intensive contexts.”® Therefore, O(¢) should not be
considered O(1), but rather should be considered O(c™1): as technology improves, ¢ decreases.

If O(¢) = O(c™"), this resolves the contradiction. It means that O(N;Bf¢) = O(1). That matches
our intuition from earlier, and means that maximally reflective PoR, graphs really are only O(c)
complex, rather than O(c?).

We can also explain why we had such a large N; estimate before — we took an O(1) load and
blew it up to an O(c) load. So we effectively changed O(Ny) from O(c) — O(c?). That meant that
network-wide bandwidth and storage requirements went from O(c?) — O(c?).

There is also an argument that ¢ depends on the number of nodes in the P2P network — that would
take the form of a log,(n) term in O(¢). While this is true for naive gossip protocols, in practice we
see that miners will go to some effort to specifically reduce latency for block propagation. Under
near-ideal conditions, miners can propagate new blocks and reflections to one another with near-zero
local overhead (compared to the milliseconds of latency between them). Since this propagation is
constrained by the latency between these special nodes, and not by the size of the network as a
whole, we will ignore any log(n) component of ¢.

56This is something we didn’t consider when estimating N7 in Equation 27 — that the propagation delay will
increase as the excess capacity of nodes’ available bandwidth decreases. Like all such systems, response time is
inversely proportional to excess capacity.

58 of 155

[git] = 43830880 = 2025-07-22

Axiom

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

4.6.3 Axiom of Maximal Reflection

It should be clear that there are decisive advantages for UT if the PoR graph is maximally reflective.
Particularly, we can accurately describe the PoR graph entirely via new reflections, greatly reducing
PoR overhead. Thus, we will require it via a protocol rule: the Axiom of Maximal Reflection.

Axiom of Maximal Reflection

Principle: A miner must reflect all possible blocks.

Predicate: A block, L;, is invalid unless, for each reflected block Ry:
i. Ry is valid under this Axiom; and
ii. each block that was reflected by Ry or is a parent of Ry:
a. is reflected by L;; or
b. is an ancestor of L;; or
c. was reflected by an ancestor of L;.

It is worth noting that this axiom does not impact honest miners — it is in their interest to produce
maximally reflective PoR graphs. However, this does impact dishonest miners since reflecting other
chains becomes all-or-nothing.

If a dishonest miner is determined to selectively reflect only some simplex-chains, their valid blocks
cannot reflect any other blocks that are less selective. Honest miners, on the other hand, can
reflect the dishonest miner’s blocks. Thus, the Axiom of Maximal Reflection creates an asymmetry
between honest and dishonest miners.

4.6.4 The Longest PoR Chain

Figure 18 shows us an interesting feature of maximally reflective PoR graphs: between two given
blocks, the union of the paths via PoR graph tips both wisit every block and are the longest paths
between any two blocks. This is somewhat self-evident: since the PoR graph is a DAG, there is no
way to return to a block once we have visited it. Thus, if a path exists that visits every block, then
it must be a longest path because there are no unvisited blocks. A longer path would need to visit
more blocks, but there are no more blocks, therefore no longer path exists.

Although it makes sense to refer to these paths as the longest — this isn’t always strictly true.
First, we should notice that multiple paths are possible, and are expected to occur when blocks are
created near-simultaneously. In some cases, these paths can be different lengths. For example:

[Q] [@]
e [Eals -2

Time

Here, we can see that L; reflects the tips {Q;, Rx}. There are two paths from L; to L;_; in this
case: one via Q; — Q;_1, and the other via Rj. Both are a longest path in the sense that they are
locally maximal: no paths including Ry, (or @);) are part of a longer path to L;_;.

So, really, what we have identified is the DAG of the union of the longest paths between two blocks.
This is exactly the information that is necessary to reconstruct a maximally reflective PoR graph.

Let’s refer to this as the longest PoR chain, even though it is technically a DAG. Of all possible
PoR DAGs that both include all edges leading to a graph tip and visit every block, the longest
PoR chain has the fewest edges, and is thus the most chain-like of those DAGs. Additionally, in
Section 4.8.7 we will discuss some symmetries between blockchains and the longest PoR chain.

59 of 155

[git] = 43830880 = 2025-07-22

Aside

Warning

Quote

4.6 The PoR Graph

Intermission and Note

Let us return to the Axiom of Maximal Reflection again for a moment. I would have
said something earlier, but I wanted to give you some time to chew, first. If you
were left wondering What happens when Ry reflects an L block that is not an ancestor
of L; ? then I say ‘well spotted’ to you — finding criticisms on a first reading is worthy of praise.

Now, the answer to the question: on the one hand, if the L chain deliberately
forks, and two distinct chains emerge, then they should reflect one another like any other
pair of simplex-chains. On the other hand... well the other hand is a problem that we can’t
solve, yet — we’ll ignore it for now and return to it in Section 4.8.7.

4.6.5 Generalizing NIPoPoWs

This section is speculative; it’s about how NIPoPoWs might be possible for the longest PoR.
chain. Subsequent sections regarding NIPoPoWs will, likewise, be speculative. UT won’t
depend on NIPoPoWs, but they are useful and it would be good to support them, if possible.

4.6.5.1 NIPoPoWs Primer

Prior work: Non-Interactive Proofs of Proof-of-Work (Kiayias, Miller, and Zindros; 2018).

Non-Interactive Proofs of Proof-of-Work (NIPoPoWs) are short stand-alone strings that a
computer program can inspect to verify that an event happened on a proof-of-work-based
blockchain without connecting to the blockchain network and without downloading all block
headers. For example, these proofs can illustrate that a cryptocurrency payment was made.

— What are NIPoPoWs? (nipopows.com; 2019)

NIPoPoWs are possible due to the statistical properties of proofs of work. They require an additional
interlink structure between blocks. The interlink structure is a kind of skip-list, where a block at
height h links back to ~log, h other blocks.

The insight that enables NIPoPoWs (and PoPoWs more generally) is that some PoWs will be much
lower than the difficulty target, and that the frequency of these special PoWs is dependent on the
total number of PoWs that have been produced. That is: if the PoW target is 2'84, then all valid
PoWs will be < 2184 50% will be < 2'83 25% will be < 2'%2, and so on. We can generalize this via
the statement: P(PoW < 2184=#) = 27# — the probability that the proof of work is less than or
equal to 2'847H equals 1/2%. In essence, u is a measure of the excess capacity of a block’s PoW:
how many orders-of-magnitude lower could the target have been, given the actual PoW.

When a block has p > 0, it is a p-superblock, and it is these superblocks that the interlink structure
uses. Particularly, for each integer value of u, each block links back to the most recent u-superblock.
The chain of u level blocks is the p-superchain. Note that the O-superchain (or O-chain) is identical
to the blockchain itself. This interlink structure is partially shown in Figure 19, which shows each
p-superchain according to the perspective of the right-most block. The full interlink structure is
shown in Figure 20.

Intuitively, a NIPoPoW works because it uses the (very short) top-most chain of p-superblocks as
a basis to hone in on a target block (denoted C[—k] in the NIPoPoW paper) a few confirmations
behind the chain tip. This is done by progressively inspecting the most recent segments of lesser
and lesser p-superchains to establish the expected chain-weight that has been contributed to that
target block.”® This is the main suffiz proof, as it proves the blocks at the recent end (suffix)

57Source diagram: https://nipopows.com/images/hierarchical-ledger.png
58The NIPoPoW algorithms don’t do this exactly, but they embody similar and convergent knowledge.

60 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20190123153947/https://eprint.iacr.org/2017/963.pdf
https://web.archive.org/web/20210520174729/https://nipopows.com/
https://nipopows.com/images/hierarchical-ledger.png

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Figure 19: The p-superchains used by NIPoPoWs. Each column represents one block. The y-axis
indicates the p level of each block. A u-superblock is also a (u— 1)-superblock. Credit: the structure
and content of this figure is credited to the authors of the NIPoPoW paper (Kiayias, Miller, Zindros)
— this figure is a recreation of one of their diagrams.””

G (3]

|

Figure 20: The full interlink structure used by NIPoPoWs for the chain segment shown in Figure 19.

of the blockchain. (Additionally, the most recent k blocks (C[—Fk :]) are included alongside the
proof.) The work required to generate the main suffix proof is (approximately) as much work as
has been contributed to the entire blockchain history. Thus, an adversarial NIPoPoW requires
(approximately) as much work as the total chain-weight of the honest chain, so NIPoPoWs are
secure.”’

Now that the chain-head and relevant p-superchains have been proven, arbitrary blocks in the
chain’s history can be proven. This is done by ‘following down’ from a top-level u-superblock to the
target block, following the interlink structure. Starting with the earliest p-superblock between the
target block and C[—k], up to p levels are progressively descended until the target block is reached.
‘Following down’ means: for a u-superblock, check if the previous block at level (u — 1) occurred
after the target block — if so, that block becomes the next in the series, otherwise decrease p by
one and repeat with the current block. The proof terminates at the target block. The blocks that
are traversed comprise the infiz proof for that block.

An example of a NIPoPoW with a suffix and infix proof is shown in Figure 21.

Notice that there is no concept of state used when reasoning about NIPoPoWs — we’re only
considering a chain of interlinked blocks with PoWs. Put another way: there is no requirement that
these blocks belong to the same blockchain; only the PoW and interlink structure matters.

So, at first glance, it appears that the longest PoR chain might work with NIPoPoWs, or some
modified variant, at least.

There are two important caveats that are mentioned in the NIPoPoW paper; these are problems
for us and we will have to address them.

First: the authors assume a single chain of blocks, not a graph. Thus, any simultaneous blocks in
the PoR graph are an issue.

Second: the authors assume a constant difficulty. For a traditional blockchain, this isn’t too much
of a problem. For UT, however, we ideally want uncoupled simplex-chain difficulties, even if they
use the same hashing algorithm. Speaking of which, how does a NIPoPoW work if more than one
hashing algorithm is used?

59This is a simplification — see Non-Interactive Proofs of Proof-of-Work (Kiayias, Miller, and Zindros; 2018) for
full details.

61 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220329012237/https://cloudflare-ipfs.com/ipfs/QmYDpsHgs8wjX4qedMUDzanErehZuUcpV8fp2dBFbr9c5r

Aside

4.6 The PoR Graph

===\ A\ W\

Infix Proof J Blocks directly above another Suffix Proof J
Target Block block are the same block Target Block

Figure 21: The blocks of a traditional chain that comprise a NIPoPoW. For a given u > 0, each
superblock at that level is the same block as the one directly below it; only half of the blocks at
level pn — 1 are also p-superblocks. Yellow blocks are part of the main suffix proof. Patterned blocks
comprise the infix proof of the target block. Patterned blue blocks are unique to the infix proof.
The striped pink and gray block is an explanatory aid and is a 3-superblock.

4.6.5.2 Non-Interactive Proofs of Proof of Work Reflection (NIPoPoWRs)

Before we discuss the problems mentioned above, it is important to note that the method we will
devise cannot make use of converted work from non-PoW blocks (e.g., if some simplex-chain used
PoS, or PoA, etc). That’s because there is no real sense to such a block being ‘lucky’ in the way
that PoW superblocks are. We can still link back to non-PoW blocks as 0-blocks, though (i.e.,
they’re at the lowest u level).®”

Thus, these will not be NIPoPoRs — this method requires PoW, so, in terms of PoRs, we are only
concerned with PoW reflection, rather than all reflection.

You should know, I am only confident about the principles of NIPoPoWs, not the specifics.
So, I claim the following only as an in principle argument. Further diligence is required.

Problem: DAG Compatibility If the longest PoR chain is a DAG, then the interlink will need
to be a DAG, too. Sometimes, two (or more) blocks will be simultaneous, so we will have two (or
more) graph tips in those cases. When that happens, we will always have at least two 0-superblocks
(since a 3-superblock is also a 2-superblock, etc). In fact, at and below the p level of the lightest
graph tip, all interlink levels will point back to all graph tips.

We are therefore dealing with p-superDAGs, not p-superchains. The existing NIPoPoW
followDown®! algorithm should work fine for high level u-superblocks. Since simultaneous blocks
at such levels will be exceptionally rare, we can expect higher u-superDAGs to be much more
chain-like than the longest PoR chain.

At lower levels (or any level), it doesn’t matter which path to the target block we take (if more
than one is even available). The PoR graph has no conflicts and no concept of a “doublespend” —
rather, it is a massive graph of interconnected merklized tree structures where vertexes are merkle

60Note that, currently, this implies that non-PoW blocks are considered to contribute some work, which they do
not in this context (it is not verifiable). We will resolve this conflict shortly — at the end of the section, it will make
sense to consider them 0-blocks at the lowest u level.

61The followDown algorithm produces the necessary blocks to connect a superblock to a proceeding regular block.
It is defined in Section 5.1 and Algorithm 6 of Non-Interactive Proofs of Proof-of-Work (Kiayias, Miller, and Zindros;
2018)

62 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220329012237/https://cloudflare-ipfs.com/ipfs/QmYDpsHgs8wjX4qedMUDzanErehZuUcpV8fp2dBFbr9c5r

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

roots and comprise the leaves of future vertex-roots; thus, edges are merkle branches. Put another
way, there’s no sense of priority between siblings of the same p level. This is not true for chains
using GHOST (or block-DAGs)%” — in those cases it is possible for an uncle block to be of a higher
u level than its non-uncle sibling, so this construction doesn’t cover those cases. But, in the case of
the longest PoR chain, we are only concerned about whether a block exists — it doesn’t matter
how we get there, just that we can get there.

Curiously, this change is an alternate solution to the problem of an attacker “[breaking] chain
superquality with non-negligible probability” addressed in the NIPoPoW paper (Section 7).

The attack is one that allows an attacker to manipulate the public chain’s “superquality” (a measure
of the frequency of p-superblocks), such that fewer superblocks become canonical. In essence, the
attacker selectively performs a selfish-mining-like attack whenever a significant p-superblock is
found. Their goal is to mine an alternate longest chain, such that the superblock becomes stale.
This then allows the attacker to produce, in private, a superior NIPoPoW (compared to that of the
public chain) for fewer resources than should be required.

The authors solve this problem via introducing a concept of “goodness” — which is basically that
proofs must be succinct and “good at every level” (when this is not possible, provide the whole chain
instead). The authors then show that, when goodness is not violated, the attack is impractical.

In our modified graph-based version, though, there is no such problem: blocks cannot become stale.
Additionally, the Axiom of Maximal Reflection guarantees that the interlink history will fully span
the entire PoR graph.

Problem: Variable Difficulty and Multiple Hashing Algorithms There are really two
problems here for us to think about. If we can solve the problem of blocks using different hashing
algorithms, then we will need to handle variable difficulty anyway, so let’s work on the critical path
first (variable difficulty).

Let’s consider the superchains of two very similar traditional chains, A and B, using the same PoW
algorithm. Since these chains use the same hash, we can scale their respective u values depending
on their relative difficulties.

If the difficulty of B is half that of A, then we can convert 4 levels into ug levels by adding 1. In
this way, all blocks in A are at level uy4 = 0 which is equivalent to level ug = 1.

We can observe this equivalence via the following thought experiment: what does B’s 1-superchain
look like if B’s block frequency is twice that of A? First, we should expect that, for a given
period, there are twice as many B blocks as there are A blocks. Since about half of B blocks will
have ug > 1, there will be approximately as many B blocks in the (ug = 1)-superchain as in A’s
(14 = 0)-superchain.

This makes sense: there are twice as many blocks at half the difficulty, so we expect the same
hash-rate to be mining on each chain. If both chains have the same hash-rate, then they should
produce the same number of blocks at a given u_4 level. Since B has the lower difficulty, this is not
true for a given ug level — A produces no blocks at level ug = 0.

Now, let us modify B’s protocol in a strange way. We’ll say that B blocks must explicitly include
all transactions (in sequence) from all ancestor blocks between the block itself and the prior
(1 > 1)-superblock. We'll also assume that there are suitable optimizations such that this isn’t an
issue for the B network. This modification means that no B NIPoPoW ever needs to descend to
below pup =1 again.

For all intents and purposes, A and B produce almost indistinguishable NIPoPoWs (excepting, of
course, that they prove blocks in different chains). Without analysis of the B protocol, and ignoring
that all B proofs end at level ug = 1, there is no sign that the B chain has twice as many blocks at
half the difficulty. The proofs are similar sizes, descend the same number of u levels, have similar

62GHOST and block-DAGs are the specific focus of Section 4.8, and we’ll discuss this issue properly, then.

63 of 155

[git] = 43830880 = 2025-07-22

4.6 The PoR Graph

numbers of blocks at each (adjusted) p level, etc. So we might ask the question: how do we know
that A doesn’t produce blocks at level p 4 = —1, similar to B?

The point of this is to demonstrate that u levels are relative and convertible between A and B, and
there is no appreciable difference based on any p-offset.

Therefore, we can express p4 and pp in objective terms by measuring them relative to an arbitrarily
low difficulty (e.g., 1). Let’s call the p level in terms of a difficulty of 1 the objective u level.®® A
consequence of this is that duplicate interlink entries (over sequential levels) will be common when
there is a large difference between difficulties (i.e., pa > pp). Thus, we should also modify the
interlink structure to prepend the p level to each group of previous blocks at that level. This allows
us to omit the duplicates, assuming we use an appropriate cryptographic structure (e.g., a merklix
tree seems suitable at first glance).

This works because no proof for either A or B will ever need to descend below the minimum objective
w of that chain’s difficulty, and the statistical properties of all higher u levels are maintained. It is
no easier for an attacker to generate a malicious NIPoPoW than it would be otherwise.

Further, this is consistent with the observation that, if A’s hash-rate doubled, then it would appear
as though the minimum g level increased by 1 (assuming that p levels are not recalibrated according
to the current difficulty).

However, this method is only partially consistent with the notion of goodness introduced in the
NIPoPoW paper — the statistical distributions of u-superblocks will only hold until the objective
w level of a chain’s difficulty. We will ignore this problem as the graph-interlink structure has no
need of a goodness measurement.

This resolves the first part of the problem: variable difficulties.

With regards to multiple hashing algorithms, PoR itself has already laid the groundwork for a
solution: the conversion of work. Recall that in Equation 2 we derived ConvWorkg_,;,: a function
for converting R-hashes — L-hashes.

We can use this to calculate a PoW’s equivalent p level in terms of another hash. We can think of
converting a block’s weight as starting with the chain R target, converting that to the difficulty
(R4 hashes/block), applying ConvWorkg_,1,(R4), and converting this to the L target. Similarly,
we can convert u levels using the same process, except that we replace the actual target with the
lowest possible satisfiable target for the block in question.

However, these u levels are only comparable after linear scaling, so we need to differentiate them.
From here out, we only need objective u values, so let’s use ug to refer to the objective u of the
R chain, and pj, to refer to that of the L chain. We should note that, for a chain C, if we want
the pe level relative to the difficulty, we just need to subtract log,(Cy) (which is the minimum
objective uc level of any chain C block).

Conversion Example: let’s start with an R chain PoW target of 2'84 — corresponding to a difficulty
of 27, Next, a block is produced with a PoW of 2'81; it has an objective pr of 75. The minimum
target that the block would satisfy is 2'8!, which corresponds to a maximum difficulty of 27°
(R-hashes). Note that log,(max. difficulty) = pr. We then convert this via ConvWorkg_, 1,(27°) to
get L-hashes. All that remains is to take and take log, to get the converted objective pr..

What can we say about upg’s relationship with p,? Consider that, in the SRT context, Equation 1
simplifies to LqR,(RqL,)~t. Therefore:

M . LqR,(RyL,) ™" = 21&
QLR .Rr/Rd — oKL 'Lr/Ld
logy (217 - R,/ Ra) = logy(2"* - Ly /Lq)
pir —logy(Ra) +10gy(Ry) = pr, — logy(La) + logy(Ly) (28)
pir +logy(LaRy) —logy(LrRa) = pir, (29)

63The difficulty is the expected number of hashes to find a solution, so a difficulty of 0 (or below) is impossible.

64 of 155

[git] = 43830880 = 2025-07-22

Aside

Quote

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Note that pur — log,(R4) (Equation 28) is the block’s relative pg level (and similarly for iy, on the
right-hand side).

All that remains is for each block in the longest PoR chain to calculate objective u values of the
same type using Equation 29.

Earlier, we determined that objective u values of the same type can accommodate variable difficulties.
Thus, we have resolved both parts of the problem.

NIPoPoWRs: Summary We have sketched the explanatory framework and construction of a
variant of NIPoPoWs that is compatible with the longest PoR chain: NIPoPoWRs.

NIPoPoWs were modified in the following ways:
1. Convert (via PoR) each chain’s native p values into a common type for the interlink structure.
2. Use objective u values to accommodate variable difficulties.
3. Replace the tree-interlink structure with a graph-interlink structure.

The Axiom of Availability means that the PoR graph does consensus on which blocks exist. The
Axiom of Maximal Reflection means that the interlink structure spans the entire PoR graph. Thus,
any path to a block is a valid path and we don’t need to introduce the notion of goodness.

We should also note that this construction does not (yet) work for block-DAGs (including GHOST).
We will continue this construction in Section 4.8.8.

Although we are considering a graph-interlink structure, we should note an obvious optimiza-
tion. First, let’s notice that: when introducing multiple back-links to blocks of equal p level,
those new blocks must be a subset of the PoR tips recorded in the header (since there might
be other tips that are of a lesser p level). Thus, we don’t actually need to include both/all
in the interlink structure, since we always have access to both/all paths via the PoR tips in
the header, which is already part of the NIPoPoWR.

4.7 Confirmation Times

A confirmation is a discrete event that occurs when a block is produced. When an attacker is
performing a hash-rate based doublespend attack, they are, effectively, racing the honest network;
that race is measured in confirmations, not time.

The probability of success [of a double-spend attempt] depends on the number of blocks [by
which the honest network has an advantage|, and not on the time constant Tp.

— Meni Rosenfeld; Analysis of hashrate-based double-spending (Meni Rosenfeld; 2012)

In a traditional blockchain (e.g., Bitcoin, Ethereum Classic) confirmations occur, on average, at a
predictable rate (that of the target block production frequency). Thus, for any particular traditional
blockchain, a convenient time-based rule of thumb can be devised, e.g., a Bitcoin transaction is
safe to accept after 1 hour. However, this approximation only works because blocks (and thus
confirmations) are only produced locally (to that blockchain) and at a probabilistic (roughly
constant) rate. Put another way, the frequency of confirmations is identical to the frequency of
blocks, By Hz. Since O(By) = O(1), the time-complexity of confirmation in these networks is also
o(1).

When using PoR, though, the assumptions behind that rule of thumb do not hold — while blocks
on a single chain may be produced at a constant rate, that chain also gains a security benefit
from other chains. For the case of a 2-chain simplex (where those chains have the same block
production frequency), the rate of confirmations will be twice the rate of block production. This
is easily generalized: for an Ni-simplex with simplex-chains that share some block frequency By,

65 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv

4.8 DoS and DAGs

the rate of confirmation will be C' = N; - By Hz. Thus, the rate of confirmations has complexity

O(C) = O(Ny - By) = O(N1) = O(¢).

Let confirmation time be the duration breakpoint beyond which enough confirmations have occurred
to consider a transaction safe. This is equivalent to the rule of thumb mentioned earlier. For a
traditional blockchain, as mentioned, this is the product of some constant and the expected duration
between blocks: Bffl. For a simplex, though, the expected duration is C Nl.le' Thus, as
the simplex grows — as N; increases — the entire network’s rate of confirmations also increases,
and thus confirmation time approaches 0°%.

A 200-simplex with By = /15 has a confirmation rate of C' = 40/3 ~ 13.3 Hz. An 800-simplex
with By = 1/60 has the same confirmation rate. A 1400-simplex (the most optimized maximal
simplex given Amaroo’s initial configuration) with By = 1/15 has C’' ~ 93 Hz — ~46.5x faster
than EOS/Solana, ~1116x faster than Eth2, ~1400x faster than Ethl, and ~55,800x faster than
Bitcoin.

Note that PoR incents miners to publish blocks as soon as possible so that those blocks begin
gaining reflections. If a miner does not publish a block immediately, then the reflections in that
block become out-of-date very quickly as there are new, additional headers to reflect arriving
constantly. Additionally, any competing block (published immediately by an honest miner) will
begin acquiring reflections earlier, and contains more valuable reflected headers (incenting other
miners to subsequently reflect it). So the published block has two distinct advantages over the
withheld block. This mitigates the selfish mining®® attack.

4.8 DoS and DAGs

Up to this point, simplex-chains have been treated like traditional blockchains, where each block has
only one parent. Since the vast majority of a simplex-chain’s security is provided by other simplex-
chains (and only a small proportion comes from that chain’s foundational consensus method), are
attacks like an empty-block Denial of Service®® (DoS) possible? If a simplex-chain were to use PoW,
then it might be (relatively) trivial for an attacker to perform such an attack. This is because — in
traditional blockchains — controlling more than 50% of the blocks produced provides ezclusive
control over which candidate child blocks win (i.e., are accepted into the canonical chain).®” Is there
a way that we can mitigate this risk? If blocks were permitted more than a single parent, can this
exclusivity be denied?

4.8.1 Block-DAG Lineage

The idea that blocks in a chain can have multiple parents — i.e., the chain forms a Directed Acyclic
Graph (DAG) that is not also a tree — dates back to (at least) late 2013 with the publication
of GHOST®® by Sompolinsky and Zohar. However, GHOST disallows multiple canonical parents,
and a chain using GHOST defines its canonical history — the main chain — via the chain formed
exclusively from the first parent of each block. A block’s other, non-canonical parents are linked to
only for the purpose of contributing to the total chain-weight.

In the two years after GHOST was published, a number of DAG-based blockchain designs were
developed that facilitated merging histories from multiple parent blocks.

In mid-2014 I created a prototype DAG-based blockchain called Quanta® with a novel method
of linearization that converged to a complete and stable ordering of blocks. This method was

64To say that confirmation time approaches 0 only tells the latter half of the process by which a transaction
becomes confirmed. The first half of that process is getting an initial confirmation, which is effectively a small, but
constant, overhead.

653ee Majority is not Enough: Bitcoin Mining is Vulnerable by Ittay Eyal and Emin Giin Sirer.

66For an example of this attack, see Luke Jr’s attack on Coiledcoin.

67Exclusive control of this nature also allows for protocol changes via soft-forks. Additionally, because these
soft-forks can be undetectable (when done well) and don’t necessarily affect the income of a miner substantially,
bribery (of miners) is theoretically inexpensive. WRT UT, this problem is resolved in Section 4.8.3.

68Secure High-Rate Transaction Processing in Bitcoin (Sompolinsky, Zohar; 2013)

69Quanta source code, Quanta BitcoinTalk thread.

66 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20240927042356/https://gateway.pinata.cloud/ipfs/QmNukb1L8BhEsiCbrmnkEJWAvUjhBHidinKMZKfCaLG6ep
https://bitcointalk.org/index.php?topic=56675.msg678006#msg678006
https://web.archive.org/web/20220308084727/https://cloudflare-ipfs.com/ipfs/QmTDz4WuAXi2rV7Ei3pHHKTFCYGPeDbDoAkmypkHdJnnKe
https://github.com/XertroV/quanta-test/blob/ba598d5fe89d3b16db07533957a2080edb19a9cd/quanta.py#L157
https://bitcointalk.org/index.php?topic=1057342

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

independently rediscovered™ in mid-2015 by Lewenberg, Sompolinsky, and Zohar”' — who also
further developed and analyzed the method, which they named the inclusive protocol. Additionally,
in 2016, Paul Firth further developed Quanta in his Trustless Eventual Total Order draft.”

In late-2015 several new alternative methods were also published, however, these are not general-
izations of Nakamoto consensus. Namely: Lerner’s DagCoin", and IOTA’s Tangle’*. Since then,
multiple other models have been proposed, and some built.

For the purposes of this paper, we are concerned with Quanta / the Inclusive Protocol (which is
detailed in Inclusive Block Chain Protocols (Lewenberg, Sompolinsky, Zohar; 2015)).

4.8.2 Basic Structure

There are decisive advantages to using DAGs (instead of trees) as the fundamental structure of a
chain. Namely, multiple histories (both compatible and incompatible) can be merged into a single,
consistent history — a feature which eliminates stale blocks and thwarts attacks like an empty-block
DoS. UT’s simplex-chains must be block-DAGs to remain functional and avoid such DoS attacks.

Often, the motivation for using a block-DAG — instead of a block-tree — is to increase the block
frequency. Since block-DAGs can reference multiple parent blocks, the stale-rate can theoretically
approach (or reach) 0. In UT, increasing the block frequency eventually becomes counter-productive,
though, since UT is sensitive to the size and number of headers that are produced (see Section 5.9).
In UT, the purpose of using block-DAGs is to thwart certain attacks, not to increase the block
frequency. The intention is for UT simplex-chains to use fairly typical block frequencies (e.g., 1
block per 15 s) — possibly decreasing those frequencies over time to increase capacity. Slower block
frequencies also decrease the incidence of multiple parents — this matters because each parent
typically increases the header size by 32 bytes.

Some basic block-dag segments are shown in Figure 22.
Time) Time T Time T

B; /‘Bi'\

/ \ Bit1a Bij1 / Tl \
\

Bit1a Bit12 Bit1a ’ Bit1,2 Bit13

,\ / Bv’,+2,1\ /'B'i+2.2 '\ T /.,

(a) A simple 2-parent example of (b) A slightly more complex ex- (c) A 3-parent example of a block-
a block-dag segment. ample of a block-dag segment. dag segment.

Figure 22: Some examples of simple block-dag segments.

The essence of DAG-based consensus (at least the kind we’re concerned with) is to prioritize
execution of blocks and transactions based on the security contribution (i.e., weight) of each parent
block (and that parent’s ancestry). Based on a most recent common primary’® ancestor, we can
decide which parent’s history has priority execution. Prioritized blocks are positioned earlier in the
final ordering.

70As far as I can tell, the linearization methods produce identical results.

"nclusive Block Chain Protocols (Lewenberg, Sompolinsky, Zohar; 2015)

72T.E.T.O Draft (Paul Firth; 2016)

73DagCoin Draft (Demian Lerner; 2015)

74I0TA BitcoinTalk Thread (Come-From-Beyond; 2015)

75In DAG (or DAG-like) chains, primary ancestors form the main chain, a.k.a. the pivot chain. Provided that
parent blocks are prioritized by cumulative work, the chain of primary ancestors between a given block and the
genesis block must be the heaviest path between the two.

67 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20210426004857/https://cloudflare-ipfs.com/ipfs/QmPb3oZBwyg1EJCR2CivnjTKWkf9UxhVbU8JByv6SW1pXy
https://web.archive.org/web/20210426004857/https://cloudflare-ipfs.com/ipfs/QmPb3oZBwyg1EJCR2CivnjTKWkf9UxhVbU8JByv6SW1pXy
https://github.com/wildbunny/docs/blob/master/T.E.T.O-draft.pdf
https://web.archive.org/web/20240825150407/https://bitslog.com/wp-content/uploads/2015/09/dagcoin-v41.pdf
https://web.archive.org/web/20250126094356/https://bitcointalk.org/index.php?topic=1216479.0

Term

4.8 DoS and DAGs

When a block has more than one parent, the prioritized parent is the primary one. The chain of
primary parents forms the main chain.

Main Chain: In a block-DAG, the main chain is the continuous chain of primary parents
from the best block to the genesis block. Blocks that are part of the main chain are on-main,
and blocks that are not are off-main.

Let’s limit block-DAG blocks to two parents. If the best block has two parents, then each parent
will have a subgraph of blocks between itself and the most recent common primary ancestor of the
two parents. The subgraph which takes priority is that of the prioritized parent’s ancestry. If that
subgraph is a chain, then the ordering and execution of blocks is trivial. If it is not, then there
must be another subgraph within that subgraph, and this algorithm is applied recursively to the
prioritized parent. After the prioritized subgraph is processed, the remaining blocks (those that
are only ancestors of the secondary parent block, if it exists) are ordered and applied — invoking
recursion where necessary. Finally, the best block is applied. In this way, all blocks are executed
after their ancestors, and there is a clear and total ordering that trivially converges.

There is a simple generalization of the above to allow more than two parent blocks, too. That is:
replace all but the last (worst) parent with a virtual parent block that links back to all remaining
actual parent blocks (but contributes zero block-weight itself). Replacing the best parents (rather
than the worst parents) with a virtual block means that the fork rule works when selecting the
virtual block over the least-prioritized parent. This can be repeated to allow for arbitrarily many
parents.

Figure 23 is an example of this algorithm for a moderately complex chain-segment (B;--- B;t3
which is 7 blocks total), and each step is enumerated and explained.

We should expect conflicting transactions (which might otherwise be attempted doublespends)
to arise during this process. Ancestors of one parent may not be ancestors of another parent.
The exact protocol for handling conflicts is up to the implementation, but there is no reason that
secondary parents should be treated as invalid by default. We will discuss merging histories in
Section 4.8.5.

68 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Time T
B;
$w =0
PN
Bii1, Bii1,2 Bit13
Sw =1 E;/ e =1
Bito1 Biyoo
S =4 S, =3
N/
Biis
Sw=6

(a) How should we order this block-
DAG? Note: children should al-
ways be after their parents, and
prioritization means earlier execu-
tion.

Time
B;
S =0
TN
Bit1,1 Bit12 Bit1,3
Sw =1 Se =1 S = 1
Vit
Sy =2
1
Bii2.1 Bit22
Sy =4 S =3
N/
Bii3
=6

Time T Time T
Sw =0 S =0
/ T \ d T T
Biyi1 B2 Biy13 Bit11 Bit1,2 Biti13
Sw =1 S =1 S =1 S =1 Sw =1 Sy =1
N/ ' N
Vigo Vit21
Ty =2 Ty =2
T 1
B2 Bito2 Biyan Bita2
S =4 Sw =3 Sy =4 Yw =3
By B3
S = 6 S =6

(b) The first thing we should do is (c) Since there are two parents,
create any virtual nodes that are Wwe look at the prioritized subgraph

required (Viyo,1)

(i-e., most worked).

Time T Time T
B; B;
S =0 S =0
T —
1 N
Bii11 Bii12 Bit1,3 Bit11 Bit12 Bii1,3
Sy = 1 Se =1 T =1 S = 1 S = 1 S =1
;\ /\] R A R
\ 7’ \ ’ 1
v, i
Vigo1 Vit s g
By =2 y =2 AR 1
A 7’ \ 1
T 0 ,' \ 1
1 ’ \ I’
Bii2, Bt Bit2, Bit2,2
Sy =4 S =3 Sy =4 S =3
'\ /‘ ~ o
N ,
Bii3 Biys
S =6 S =6

(d) Again, there are two parents, (e) We’ve found a chain. These (f) We're now ordering the blocks —
so we look at the mext prioritized blocks have the highest priority, so the solid arrows represent the final

subgraph.
Time T
B;

S =0

/' ls\
Bitia Bit12 Bit13
S =1 S =1 S =1
/‘ N o
\ P
\ 1
Vitaa AN
1
Ty =2 P '
7’ \ 1
~ L7 \ 2
1 7’ \ U
Bit21 Bii22
Ty =4 S =3
LK A

N ,

Bi+3

S =6

are executed first.

Time

Bit1,1
Bigy = 1L

Bi+3

Tw =26

ordering. In this step we order the
highest priority blocks.

Time T
B;
Sw =0
Bit11 Bit1,2 Bit13
e =1 S, =1 Sp =1
/ A
‘/i+2.1
S =
Biya |, Bitao
Sw = Yw =23
Bii3
Yw =6

(2) Now that the highest priority (h) Once more, we order the next- (i) And finally we order the last re-

blocks are ordered, we can order
the previous subgraph.

in-line subgraph.

maining blocks. (We could remove
virtual blocks too).

Figure 23: Example: sorting a moderately complex block-DAG; note that the left parent is always
the best parent, so will have priority. Each block is annotated with its chain-weight (X,,).

69 of 155

[git] = 43830880 = 2025-07-22

4.8 DoS and DAGs

4.8.3 Block-DAGs Prevent DoS Attacks

Consider the situation where an attacker is attempting to deny service via the production of empty
blocks, and that the attacker can create blocks faster than the honest network. Such a situation
is illustrated in Figure 24. Since the goal of the attack is to prevent transactions from occurring,
the attacker must”® produce empty’” blocks. Furthermore, if the attacker links back to any honest
blocks then the honest blocks’ histories will be merged with the canonical history; thus the attack
would fail. The attacker’s only available strategy is to produce a single chain of empty blocks.

Attacker’s A¢+1 Ai+2 Ai+3 Ai+4 Ai+5 Ai+6
Blocks Ty =1 Dy =2 Yy =3 Dy =4 Ly =5 Ly =6

Honest Hiq
Blocks Y =2 Yw =5 Y =8

Time

Figure 24: An attempted empty-block DoS attack on a block-DAG. The attacker’s blocks, A;; 4,
are mined in public and contain no transactions. Each block is annotated with its chain-weight
(3w); a double outline indicates that a block is part of the main chain. Even though the attacker
produces 2x as many blocks as the honest network, the attack inevitably fails after a short while.
Note: H; is defined to have X, = 0 for illustrative convenience.

The challenge of such a DoS attack is to prevent honest miners from extending the attacker’s
chain-segment. For traditional (non-DAG) chains — where each non-genesis block has exactly
one parent — this is accomplished as soon as the attacker is able to reliably produce a heavier
chain-segment than the honest network for a given period.”

However, if blocks are allowed to have more than one parent then there is no point where an
attacker can maintain a DoS attack indefinitely. Instead, they can only delay the execution of some
transactions for a short period of time. Particularly, if an attacker can produce Apjoeks > 1 for
every 1 block produced by the honest network, then the attack can delay honest transactions for
up to approximately (Ablock52 -1)-B f71 seconds, where By is the frequency of block production
(in Hz). After this (approximate) point, the weight of the honest chain-segment, which includes the
attacker’s chain-segment, is always greatest.

If an attacker performs a repeating cycle of these attacks, then it may be able to decrease the
effective capacity of the chain by a factor of ~Apjees>. The opportunity cost of this attack, for the
attacker, is at least as much as the lost transaction fees.

We'll discuss DoS attacks again, shortly, in Section 4.8.7.

76The attacker could also fill the blocks with spam transactions. That’s more work for the attacker, but also
more work for the honest network (calculating and storing that state, maybe indefinitely). It’s preferable that the
attacker has minimal transactions in their blocks. It’s tempting to think of ideas like: since the attacker’s blocks are
empty, we can let honest nodes make larger blocks via some kind of weighted average block size calculation plus
some flexibility in the size of blocks produced. The problem with this is that it incents the attacker to fill their blocks
with spam transactions, which is counterproductive.

""Note that the attacker should still be reflecting other simplex-chains so as to maximize the total weight of
the attacker’s chain-segment. Given this, the attacker’s blocks will contain reflected simplex-chain headers but no
transactions.

"8For a traditional blockchain, this would also imply a 51% attack were possible, so this isn’t a situation that
those chains have to deal with. In a simplex, however, a miner can have > 50% of a chain’s local hash-rate, so we
need to handle this case.

70 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

4.8.4 A Criticism of GHOST

GHOST allows for blocks to link to a single canonical parent and multiple uncle blocks. In the
full GHOST algorithm, uncle blocks contribute weight to the canonical chain-segment, but do not
contribute transactions. Thus, uncles have no ability to substantially contribute to the canonical
chain’s state.

Consider an empty-block DoS against a chain using GHOST. If an attacker were to perform an
empty-block DoS, the attacker could link back to honest miners’ blocks as uncles, but never parents.
Given this, there is no easy way for the honest miners to end or mitigate the DoS. The attacker can
include honest miners’ chain-work in a purely beneficial way — there is a symmetry, thus honest
miners (and the network) are at the mercy of the attacker.

Why does this symmetry exist? Because the cumulative weight of each block (including uncles)
is divorced from the set of transactions that is contributed by that block. However, with a full
block-DAG, when an attacker links to uncles in this way, they must allow for the execution of all
non-conflicting transactions (i.e., those which would not cause a doublespend to occur). Thus,
GHOST does not mitigate empty-block DoS attacks; only a full block-DAG can do that.

4.8.5 Merging Histories

If a block B2 has two valid parents, how can we resolve this into one consistent history?

Consider the following subgraph, where squiggly arrows indicate secondary parents: Figure 25.

[
v I
B Bl B

Time

Figure 25: A simple block subgraph. Standard arrows indicate primary parents, and squiggly
arrows indicate secondary parents.

By the ordering algorithm we covered above, we know that the blocks will executed in this order:
Bi, Bit1a; Bit2a; Bit1b, Bits.

Typically, a blockchain’s state transition function can (at least partially) be verified via the pattern
in Algorithm 7. We first load the parent’s state, apply each transaction in sequence, and then
calculate the new state root. If this matches the state root recorded in the block header, then the
state transition is valid (all else being equal). This works fine for some blocks that have only one
parent (e.g., Bit1a, Bit2a)-

Algorithm 7 A basic state transition verification function

procedure VERIFYSTATETRANSITION(parentStateRoot, TXs, stateRoot)
midState «+ LOADSTATEFROMROOT(parentStateRoot)
for tx in TXs do
midState < APPLYTX(midState, tx)
end for
return stateRoot == GETROOT(midState)
end procedure

We can use this algorithm from B; 115 s perspective to ensure B, 1; is internally consistent; however,
we cannot use it with the above subgraph.

Why? Because B;11p’s parent is B;, but the block immediately executed prior to B;11p was Bjyaq.

Thus, the algorithm doesn’t work for B;115: we need to use a different prior state, and therefore

71 of 155

[git] = 43830880 = 2025-07-22

4.8 DoS and DAGs

the resulting state root will not match the state root in B;;1;’s header.

Moreover, the algorithm doesn’t exactly work for B; 3, either. In B;3’s case, its primary parent is
Bit24, but it’s state root should be the result of applying B;;13’s transactions to B;ya,’s output
state, and then applying B;;3’s transactions to that mid-state.

It is clear that the algorithm breaks for B; 3 because it has more than one parent.
The reason that it breaks for B; 13 is more subtle: B; 13 is not part of the main chain.

Observe that the pattern works for on-main blocks with a single parent, but not for off-main blocks,
nor for on-main blocks with multiple parents.

The solution is to combine new off-main ancestors (B;1;) with the relevant on-main descendant
(Bi+3) and process them as a single operation. In principle, we're collapsing the full block-DAG down
to just the main chain, so that traditional blockchains’ state-transition logic works for block-DAGs,
too.

This has two important and related implications. First: transactions in off-main blocks may not
be valid at execution time, because the previous state root changes. Second: only the state roots
of on-main blocks are accurate and reliable. We should be careful to verify proofs against only
on-main blocks — methods like SPV are not safe against off-main blocks.

We can now describe the execution in terms of the main chain by grouping novel off-main ancestors
with the next main chain block:

...*)—)’Bi_;,_la‘H’BH—Za

My 1
B} (B

Execution Order

The dotted boundary around (B;+1, — B;y3) indicates that the blocks are processed as a group.
The dashed boundary around B; 1, indicates that it is, in a sense, virtual within the state-transition
function. B;11;p is more like a part of B;13 than a block in its own right.

See Figure 26 for an addition example.

If we want to support stateless full nodes (and fraud proofs), this grouping strategy adds a constraint
to the block structure. Particularly, the complete witness structure of B;;3 is not simply the
witnesses for B;;3’s transactions combined with the witnesses for B;11;’s. Instead, it is a new
witness structure initialized from B;y2,’s state, and must cover both blocks’ transactions.

In regards to fraud proofs, the technique that we discussed in Section 4.5 requires additional data
to be included in B;;3. Recall that the transaction root should correspond to a merkle tree with
leaves alternating between state roots and transactions, with each root being that of the state
immediately prior to the transaction’s execution. Thus, B;;3 must provide intermediate state roots
that uniquely correspond to each transaction in each novel off-main ancestor. Furthermore, the
transaction root should commit to all of these {mid-state root, transaction} pairs, not only those
of transactions that were included directly in B;3.

72 of 155

[git] = 43830880 = 2025-07-22

Warning

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

’ Bitia ‘H ’ Bit2a

"'Hg’BiJrlb‘M’Bi+2b‘<‘2""Bi+3‘<;"'

3

— ’ Bitac

’Bi—i-lc

Time

My 1 My 71 My 1 My 71
[B)—[Bie] — Brias)— (B [Biom] — Brsne)— Brsae) (B

Execution Order

Figure 26: A complex block subgraph and corresponding execution order. In the subgraph, standard
arrows indicate primary parents, and squiggly arrows indicate secondary parents. In the execution
order, dotted boxes indicate groups of blocks that are executed together — when an on-main block
has multiple parents, the novel off-chain ancestors (indicated by a dashed outline) are executed as
part of the on-main block’s execution.

4.8.6 Adapted NIPoPoWs for Block-DAGs: NIPoPPoWs

Reminder: Section 4.8.6 and sections on NIPoPoWs are speculative.

Recall that in Section 4.6.5.2 we noted that block-DAGs are currently incompatible with NIPoPoWs.
This is because the traversal method of NIPoPoWs does not know anything about whether a block
is on-main or not. Additionally, the fork rule does not (and should not) prioritize blocks based on
w values. So we should expect that some off-main blocks have a higher p value than their on-main
sibling and/or their first on-main descendant. Therefore, currently, a valid NIPoPoW can lead to
an off-main block — i.e., a block that is not useful for SPV.

We do not have a problem traversing via off-main blocks, though. They share the same cryptographic
properties (with regards to interlinks) as any other block.

So, our major goal is to find a way to always arrive at on-main blocks. A valid block-DAG NIPoPoW
should never terminate at an off-main block.

One problem is that, when a block is created, the network does not know if it will be on-main or
not. Future blocks determine whether it is on-main or not.

Furthermore, we cannot be certain that all future blocks will agree that any specific block is on-main
or not. We should expect that all far-future blocks will agree, but how long should we wait and is
it reliable?

Could we simply modify the interlink structure to add a flag for off-main blocks?

No — this is not sufficient. There is only one way (in principle) to always arrive at an on-main
block: via ever more recent on-main blocks. It is only because of an on-main block’s posterity that
it becomes (and remains) on-main. Simply flagging off-main blocks does not work because, once we
reach an off-main p-superblock, we know nothing about which prior blocks are on-main or not. An
off-main block is (on its own) never a reliable source of prior blocks’ on-main status.

Here is how we can reliably arrive at on-main blocks: first, starting from all chain-tips, we find the
most recent common on-main ancestor. If this is very close to the chain-tips, we can, instead, use
an on-main ancestor a few confirmations back — so we can meet any particular security parameter
we might choose. We can be confident that this ancestor is on-main, regardless of which chain-tip
eventually ends up as the on-main block. We must then follow the chain of primary parents.

73 of 155

[git] = 43830880 = 2025-07-22

4.8 DoS and DAGs

Therefore, the interlink structure must include enough information to traverse the p-superDAGs via
on-main ancestors, only. Just because we can traverse via on-main blocks only does not mean that
we will, though. In fact, we will traverse via two paths: one normally, and the other via on-main
blocks only.

To support this, we’ll modify the interlink structure such that each link has an optional second
component: the most recent on-main ancestor at that u level. Most of the time, we should expect
blocks to be on-main, so there will only be one interlinked entry at that u level. However, in the
case that a p-superblock is off-main, the interlink entry is both that off-main u-superblock, and the
most recent on-main p-superblock (which is necessarily older than the off-main p-superblock).

Thus, we effectively have two p-superDAGs: one being the best-blocks pu-superDAG, and the other
being the on-main only p-superchain. (Each block in a block-DAG has only one primary parent, so
a chain-tip’s primary ancestry really is a chain, not a DAG.)

We then construct the main suffix proof for two cases: the best-blocks suffix proof (regardless of
on-main status), and the on-main only suffix proof. These two proofs will always be consistent,
though the best-blocks proof may not include all p-superblocks that are included in the on-main
proof. To account for this, we can require that, for each p level, the best-blocks p-superDAG
suffix subgraph is a superset of the corresponding on-main p-superchain suffix. (That is: we make
sure the necessary on-main blocks are included in the proof if they wouldn’t be otherwise.) Both
together comprise the suffix proof.

Regarding infix proofs, we can use the existing’’ followDown algorithm, is used to navigate between
superblocks and regular blocks, with only one modification: an additional parameter determines
whether followDown should traverse the best-blocks path to the block, or the on-main only path.
To generate proofs, we run followDown over each path. We similarly modify the verify-infx (sic)
and ancestors functions used to verify infix proofs.

It is worth noting that the on-main proofs alone are not sufficient for secure NIPoPoWs: in some
cases the on-main only proofs will imply substantially less total chain-weight than the best-blocks
proofs. For example: if only 50% of blocks were on-main, then the resources an attacker needs to
generate a competing NIPoPoW (for the on-main proofs) is only 50% of what they would need
compared to a best-blocks proof. Thus, we prioritize one NIPoPoW over another based on the
best-blocks proofs (rather than the on-main proofs). We do, however, validate that the target of the
NIPoPoW is on-main via the accompanying on-main proof. The on-main path is only inconsistent
with the best-blocks path in the case that the target block is off-main.®°

A major difference between the best-blocks and on-main proofs should not be an issue for UT,
though, as UT uses modest block frequencies for each chain. We should expect blocks to have a
single parent most of the time. (Using the logic from Section 4.6.1, we’d expect simultaneous blocks
~2% of the time — give or take.)

As a final note, what happens when there are multiple paths in a py-superDAG? Note that this
situation only occurs in the best-blocks proof. Since the best-blocks proof is not concerned with the
posterity of blocks (their on-main status), there is no issue here. We can choose between the paths
by whichever means we like — e.g., picking the block with the lowest PoW, or picking on-main
blocks over off-main blocks when they are siblings in the same p-superDAG.

We've just sketched the construction of a new type of NIPoPoW that can prove both the full
chain-weight and the posterity of blocks. The best-blocks half of the proof is almost a regular
NIPoPoW on its own, but the other half of the proof (traversing on-main blocks only) is not
independently secure. However, together they are secure.

79followDown, verify-infx and ancestors are functions defined in the Non-Interactive Proofs of Proof-of-Work
(Kiayias, Miller, and Zindros; 2018) paper.

80Note: when traversing the best-blocks p-superDAG, we do not care about the status of on-main blocks. Thus,
the on-main interlinks in off-main p-superblocks are not important, and we should not count any differences there as
inconsistencies with the on-main p-superchain. Similar to NIPoPoWRs, the best-blocks proof only proves that a
block exists, and no conflicts are possible via different paths.

74 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220329012237/https://cloudflare-ipfs.com/ipfs/QmYDpsHgs8wjX4qedMUDzanErehZuUcpV8fp2dBFbr9c5r

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

We should distinguish between this new kind of NIPoPoW and the regular kind. The main difference
is that what we have just sketched proves work and posterity, rather than just work. Thus, it is a
Non-Interactive Proof of Posteritorial®' Proof of Work (NIPoPPoW).

4.8.7 Block-DAG Interaction With The PoR Graph

Up to now we have mostly considered block-DAG’s in isolation; outside UT’s broader context.
Particularly, we should ask: do the Axzioms of Availability and Maximal Reflection change the game?

Recall that, when defining the Axiom of Maximal Reflection, we made sure to recursively include
blocks’ ancestors, not just reflections. This was for two reasons. First, L; should not explicitly
reflect its own ancestors — links to parents are reflections, but are the trivial case where the local
and reflecting chains are the same, and the local and reflecting blocks are the same. Second, L;
should not skip accounting for Ry’s implied reflection of its parent(s), so we treat parents like any
other reflected block — we must be sure not to leave any gaps.

There is still one gap, though: L blocks that are not an ancestor of L;.

It should be clear that parent links are qualitatively different from reflections: child blocks attest
to the validity of their parent blocks, and to continuity between these two blocks. The implicit
‘PoR’ between these blocks is also free, unlike explicit PoRs between blocks of different chains.

Unlike traditional chains, UT blocks are not only allowed to have multiple parents, but can always
include a valid chain-tip as an ancestor. Recall the Axiom of Maximal Reflection’s principle: A
miner must reflect all possible blocks. Considering the symmetry between parents and reflected
blocks, we can draft a new network principle: A miner should build on all possible chain-tips.

In effect, we want to ensure that a dishonest miner cannot evade the contradiction in refusing to
build on a valid chain-tip whilst acknowledging it as available. If it is unavailable then the miner
should not reflect the blocks that imply it is available; and if it is available and valid then it should
be a parent of their draft block.

So far, this principle is convergent with honest miners building on wvalid blocks — including every
chain-tip as a parent is what we expect honest miners to do by default. However, what are honest
miners to do if there is an invalid block? We need to consider this because a block with a valid
PoRs sub-block does not necessarily have a valid transactions sub-block.

We have already discussed the solution in Section 4.5: link back to, or flag, that block as invalid
with an attached fraud proof, and never use that block as a canonical ancestor. The transactions in
that block aren’t important — excepting the offending transaction, which is part of the fraud proof.
And we can reconstruct the PoRs sub-block using O(1) data thanks to Maximal Reflection. Thus,
an invalid block is only as large as its header, list of reflected PoR graph-tips, and fraud proof.
That’s O(log ¢) in the worst case.

4.8.7.1 Axiom of Unified Ancestry

This is all that we need to plug the gap: ensure honest miners can always build on any local
chain-tip, valid or not. If the chain-tip is valid, the honest miner uses it as a parent. If it is invalid,
the honest miner flags it as invalid. It is still an ancestor cryptographically, but not with respect to
its transactions and chain-state.

81 A definition is required as this word is an almost-neologism:

Posteritorial adjective: having posterity; supported by its descendants, especially regarding well-known descen-
dancy, epistemic antecedence, root-causal nature, etc; having a prototypical and defining quality that was widely
inherited.

Aside: Perhaps curiously, a prior candidate modifier was the latin phrase per posteras — literally ‘through what
came after’. But also faux-translated as ‘[as] per post eras’, which is roughly equivalent to the English phrase ‘via
posterity’. A downside of per posteras is that, phonetically, it’s very similar to ‘preposterous’, and Non-Interactive
Proofs of Preposterous Proof of Work is not an apt name.

75 of 155

[git] = 43830880 = 2025-07-22

Axiom

Aside

Warning

4.8 DoS and DAGs

Axiom of Unified Ancestry

Principle: A miner must use all valid chain-tips as parents, and flag invalid ones.

Predicate: A block, L;, is invalid unless, for all reflected blocks Ry:
i. Ry is valid under this axiom; and
ii. each L block reflected by Ry:
a. is an ancestor of L;; or
b. is flagged as invalid by L;; or
c. was flagged as invalid by an ancestor of L;.

This new axiom changes the game for block-DAGs.

4.8.7.2 DoS Attacks

Previously, an attacker could delay transactions for ~Ablocks> many blocks because they could
evade the contradiction in the PoR graph. Now, they cannot. Thus, empty block DoS attacks
against simplex-chain block-DAGs are limited to ~Apjocks in length (on average).®? In terms of
DoS potential, this is exactly the same as if the simplex-chain were a traditional chain and the
attacker always built on the best block, but only made empty blocks. Now that we’ve added the
Axiom of Unified Ancestry, the alternative for the attacker is producing only invalid blocks.

Note that this axiom applies and is verified in the context of the PoR graph (not chain-state).

4.8.8 NIPoPPoWs + NIPoPoWRs

Reminder: Section 4.8.8 and sections on NIPoPoWs are speculative.

In Section 4.8.6 we devised NIPoPPoWs, modified NIPoPoWs that work with block-DAGs by
accounting for posterity. That construction depended on a best-blocks proof in combination with an
on-main only proof. In the case of simplex-chain block-DAGs, we do not want to use the same
best-blocks proof since it only accounts for local chain-work and does not account for reflections.

Instead of a standard best-blocks NIPoPoWs, can we use NIPoPoWRs from Section 4.6.5.27
Functionally, both serve the same purpose: proving that a block ezists.

One potential problem is that the NIPoPPoW best-blocks proof substantially overlapped with the
on-main only proof — that isn’t the case for NIPoPoWRs as most of the p-superblocks will be
from reflecting chains. Rather, we expect the best posteritorial p-superchain to have a u level
approximately log,(N7) lower than that of the best PoR, u-superDAG (since there are Ny X as many
blocks). In other words, only 1/N; local blocks are at the same p level as the highest pu-superDAG.

Let us take stock for a moment. Each axiom adds a constraint on what the simplex does consensus
on, and each block’s relationships to other blocks. What are those constraints on consensus created
by our current axioms?

o Availability: the availability of blocks.
e Maximal Reflection: the order of blocks, and that there are no ‘gaps’ in the PoR graph.
e Unified Ancestry: the ancestry of blocks, and that there are no ‘gaps’ in each simplex-chain.

These are properties that are verifiable simplez-wide — as part of tracking the PoR graph, each
node can reconstruct each simplex-chain’s local interlink structure.®® Thus, the PoR graph knows
the last on-main block for each simplex-chain.

82We will reduce this further in Section 4.9.
831t might go without saying, but an improper interlink structure is a reason for a block to be invalid, so bad
interlinks will be rejected by the PoR graph.

76 of 155

[git] = 43830880 = 2025-07-22

Aside

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

So, can we use the same technique as we used before — tracing two proofs? Well, we will need to
modify the interlink structure once again, but it seems in-principle possible.

Compared to NIPoPPoWs, we have greatly restricted the possibilities regarding to on-main blocks:
Unified Ancestry means that both on-main and off-main blocks contain reliable®® information
regarding posterity. If a block has only one parent, then that parent must be on-main; off-main
blocks need to use all available chain-tips as parents. If child blocks have only one parent, then the
block is on-main. If the block has multiple parents, then one must be on-main, and we can always
find the most recent common primary ancestor of those parents to find an on-main block. If child
blocks have multiple parents and share the same primary parent, then we can swap to the on-main
sibling whenever needed. If we get stuck, we can repeat any of these processes multiple times to
increase our knowledge of that chain-segment — this means we can always determine on-main
status via the PoR p-superDAG. To prove posterity, we just need to show a large enough segment
of the block-DAG so that we can, with certainty, identify which blocks within it are on-main. From
there, determining on-main status of ancestors is trivial.

So we no longer need two proofs, but we do need a bit more information than a stand-alone
NIPoPoWR.

Since this method is almost the same as our previous NIPoPoWR method, we’ll avoid creating a
new acronym and just re-use the term ‘NIPoPoWR’ to refer to this version, too.

Note: there is plenty of excess capacity available to us if the above is insufficient or insecure.
We could, for example, use a NIPoPPoW to prove some on-main block, then prove each high
level p-superblock in the NIPoPPoW via NIPoPoWRs.

There is one other fact that we need to prove: that no fraud proof was ever recorded for the target
block.

4.8.8.1 Integrating Fraud Proofs

NIPoPoWs (in general) exist in a unique context: we expect that a lot of time has passed since the
target infix block was mined.

If PoR sub-blocks keep track of a set of all fraudulent blocks (and this is enforced), then we can
use a much later block (from any chain) to prove whether any fraud proof for any particular block
was ever recorded. We don’t care what the fraud proof actually was, since the PoR graph already
came to consensus on the fact it exists. This can be done via a Merklix tree, or any other merklized
structure that allows us to prove non-membership. Therefore, we can use one of the intermediate
p-superblocks to prove that no fraud proof was recorded for the target infix block. Since a long
time has passed (at least some security parameter of our choosing), we can be confident that no
fraud proof was possible, and thus that the block is valid.

We could also provide additional proofs (of non-membership) for e.g., all blocks used in the complete
full NIPoPoWR, if we cared to. Blocks with invalid interlinks cannot be used as superblocks,
though, so additional proofs should not be necessary.

This completes the sketch-construction of NIPoPoWRs.

4.9 Lowering Block Production Variance

Is it possible to dramatically lower the variance of block production in PoW blockchains without
altering incentive structures, compromising security, or changing the probability of generating a
valid block?

Yes. The method relies on the structure of the network, rather than the consensus protocol itself.
Particularly, the network must be structured such that miners’ choices result in decreased block
production variance — an emergent phenomenon. It’s important that it is emergent and not

841t’s not 100% reliable, but it’s good enough that we can always find an on-main block without much effort.

77 of 155

[git] = 43830880 = 2025-07-22

Term

4.10 Simplex Security and the Confirmation Equivalence Conjecture

synthetic (e.g., by increasing the block reward with time-since-last-block) because we don’t want
people to game the system. It’s better to have a simple system with emergent properties than a
complex system with those properties “designed in”.

Say you have a network with 10 chains: Cy, Cy,Cs, ..., Cq. If the networks are separate, then you
have 10 groups of miners: My, M7, M, ..., My. They have to choose one chain to mine on, so the
distribution of miners is expected to be approximately the distribution of normalized block rewards
plus tx fees. The proportions of block rewards between C; & C; don’t really matter, we expect the
mining groups M; & M; to just sort themselves out due to market forces. For simplicity, though,
this example assumes that mining rewards and the distribution of miners is an even 10% across the
board.

If the network has spare capacity (i.e., transactions are mostly cleared out with each block; the
mempool for each chain is ~empty) then we have a situation like this:

Set ¢ = 0 immediately after a block is published on a chain. Then, as ¢t progresses, transactions with
fees should build up in the mempool, so TxFees o t. The reward for mining a block is r 4+ TxFees
for some block reward, 7.

The potential reward-over-time for a miner (¢ vs r + TxFees) looks like a sawtooth function with a
y-axis offset. It builds as more transactions pile up, and drops back to the baseline reward after a
block.

If the miners My, ..., My are capable of working on one of any {Cy, ..., Co} (and they have identical
ROI profiles to the other miners), then they’re incented to work on the chain with the most
transactions in the mempool. That means: miners should, roughly, work the chain that has gone
the longest without a block. What should we expect based on those incentives? Miners should work
on each chain only in the final moments of the block production cycle. If block times were set to
60s, then they’d start mining at around the 54s mark because that’s how they maximize their ROI.

Why wouldn’t they just keep mining on the same chain? Because in the time that they focused on
one chain, another one passed that >54s high-ROI threshold and thus has the best ROI potential
per hash done.

We should thus expect that this configuration of chains actually synchronizes miners, resulting in
block production that is somewhat regular and lower in variance.

Miner Resonance: The effect whereby block production variance is reduced when miners
can (and do) collectively change which chain they are currently mining faster than blocks
are produced for those chains, due to changes in network-wide incentivization.

The average hash-rate on each simplex-chain, as described above, is always the same regardless of
which of the two miner strategies are used. However, the variance of block production on each of
these chains won’t be that of a chain with 60s block times, it’ll be closer to that of a chain with 6s
block times.

4.10 Simplex Security and the Confirmation Equivalence Conjecture
4.10.1 Simplex Security

Simplexes are secure if attacking a single simplex-chain is as difficult as attacking the whole simplex
(the network).

Say the attacker controls ¢ proportion of the network’s work-generation capacity (e.g., hash-rate
for PoW chains), and honest nodes control p proportion, such that p + ¢ = 1. An attacker with
q < p can attempt doublespends, and should succeed some of the time (see Section 4.10.2), but
never with certainty. The attacker should only be able to control the network’s history if ¢ > p.

Successfully attacking a single blockchain requires an attacker to publish an alternate chain-segment
that the fork rule considers heavier than the corresponding public chain-segment. Those two

78 of 155

[git] = 43830880 = 2025-07-22

Term

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

segments will have a common ancestor, so the weight of the attacker’s segment must be greater
than the weight of the public chain-segment (both start at that common ancestor).

Simplex-chains evaluate block-weight as the sum of work done on that block, plus work done on
reflecting blocks. So effecting a doublespend on one simplex-chain requires generating a chain-
segment with more total block-weight (including reflections) than the public chain-segment.

It is not viable for the attacker to mine the attacking chain-segment in public (it is self-defeating; see
Section 4.8), so they must mine it in private. Blocks mined in private will not gain reflections from
honest miners on other simplex-chains, so any reflections contributing to the doublespend must be
created by the attacker. The attacker’s reflecting blocks (which reflect the attacking chain-segment)
on other simplex-chains can be public, but the attacker’s task is simpler and not detectable if the
attacker mines reflecting blocks in private.®> There is no viable way for the attacker to prevent
honest miners from reflecting the honest chain-segment, including new blocks that extend it, nor
to prevent the honest chain-segment from reflecting blocks from other simplex-chains (again, see
Section 4.8).

The honest chain-segment, on the targeted simplex-chain, will not be reflected by the attacker
(since that would be self-defeating). Similarly, the attacker’s chain-segment will not be reflected by
the honest network, since it’s being mined in private.

Let r be the network-wide rate-of-work (hash-rate). Over some attack duration d, on average we
expect the attacker’s chain-segment to weigh grd and the honest chain-segment to weigh prd. Thus,
for the attacker’s chain-segment to reliably win, it must be that ¢grd > prd — ¢ >p. B

4.10.2 Confirmation Equivalence Conjecture

Confirmation Equivalence Conjecture (CEC): The conjecture that, when using PoR
and appropriately converting work, confirmations of reflecting chains can be treated as
equivalent to local confirmations of the same weight. See Equation 33.

The Confirmation Equivalence Conjecture is intimately connected to why PoR works. If it were
false, then PoR could not work, and neither would simplexes. Additionally, this identifies the root
of UT’s O(c) confirmation rate — the conjecture implies that confirmation rate is proportional to
the number of mutually reflecting chains.

Can we test it? If so, how?

Consider a traditional PoW blockchain (e.g., Bitcoin, Ethl, etc). It’s well known that the risk of a
doublespend against a particular block is related to the number of confirmations that block has.*
However, this is not a linear relationship; rather, it is similar to exponential decay. After the first
few confirmations, each additional confirmation reduces the risk of a doublespend by approximately
the same factor.®” So security takes time, because confirmations take time.

Now, consider a simplex: the equivalence conjecture says that it doesn’t matter whether confirma-
tions come from the local chain, or if they come from a reflecting chain. So, a simplex-chain in a
2-chain simplex should, after C' local confirmations, be as secure as a standalone blockchain with 2C
confirmations. This is true for larger simplexes, too: doubling the size of a simplex means we can
halve the number of local confirmations that we wait for — the chance of a doublespend succeeding
should be approximately the same. More generally, a simplex-chain in an N-chain simplex will,
after C' local confirmations, be as secure as a standalone blockchain after CN confirmations.

This is something we can test! (See Section 4.10.4 for that.)

As blockchain architects, if the CEC is true, then UT allows us to maintain security by trading
waiting time for more simplex-chains!

85 Additionally, if reflecting chains maintain projections as headers-only chains (i.e., construct a main chain via
SPV rules), then it should be much harder for an attacker to succeed if reflections are mined in public.

86 Analysis of hashrate-based double-spending (Meni Rosenfeld; 2012)

87The exact factor depends on the attacker’s hash-rate as a proportion of the network’s (i.e., q).

79 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv

Aside

4.10 Simplex Security and the Confirmation Equivalence Conjecture

If you were looking for an essential aspect of how UT breaks the core conflict of the
Trilemma. . .

4.10.3 Generalizing Doublespends

With a traditional blockchain, the network has no “memory” of work (mining) that has been done
which did not result in a valid block (i.e., the main chain does not record or account for that work).
Specifically, the network gains no knowledge of how much work has been done between blocks. This
is almost self-evident: each block is the sole way that work can be added to the chain. Naturally,
there is no smaller unit of contributed work than an individual block — so there’s no “memory”.*®
When an attacker publishes a heavier chain-segment which causes a reorganization, it is immediately
in the interests of miners to begin building on the attacker’s best block. A heavier chain-segment is
decisively better in all cases. That may seem so obvious that it isn’t worth mentioning, but it’s
actually a specific case that only works for traditional blockchains. If there were some “memory”, it
might be worth miners continuing to mine their ezisting block, instead of reorganizing and building
on the attacker’s best block.

What kind of “memory” could there be? Are Proofs of Reflection a “memory”?
As it turns out: yes.

Let the total chain-weight of the attacker’s best block be called W4, and the total chain-weight of
the honest network’s best block be called W.

Consider a miner of a non-DAG simplex-chain (chain L) who is working on a draft block during
an active attack (though, of course, the miner does not know about the attack). Specifically, let’s
consider just before the attacker publishes their chain-segment. In the memory pool®” of that miner,
there will be PoRs, and those PoRs are only valid for the honest chain-segment (most likely they
are for the best known honest block, but don’t need to be). Each L block, in and of itself, only adds
~w weight to the L chain. However, if that draft block contains ~n pending PoRs, and each PoR
provides ~w weight on average, then a valid block (created from that draft) will contribute, via
PoRs, ~nw weight to the honest chain-segment. What happens when the attacker’s chain-segment
is published (along with their reflecting chain-segments for other simplex-chains)? The miner has a
choice: reorganize to the attacker’s chain-segment and mine on top of a chain with weight W4, or
continue mining on the honest chain-segment that weighs Wy + nw.

That extra term, nw, is the “memory” we’re looking for, and it makes all the difference. It is only
safe for the attacker to publish their chain-segment after W > Wg +nw — only then is it decisively
better than the honest chain-segment. If, however, the attacker publishes their chain-segment when
Wy < Wa < Wy + nw: the best chain-segment for honest miners to mine is still the honest
chain-segment, not the attacker’s!

For non-DAG chains, miners don’t actually have to change their behavior at all: their choice is the
same, whether they are mining a simplex-chain or a traditional chain. That choice is: of all possible
blocks to mine, which results in the greatest reward? If they build on the honest chain-segment,
does their resulting block have more total chain-weight than if they were to build on the attacker’s
chain-segment?

There are some subtleties to consider if chains are DAGs or use GHOST: both chain-segments can
be included as ancestors, but which should take priority? If the weight of PoRs is not taken into
account (or applied after evaluating the order of parents), then the attacker’s chain-segment takes
priority when W, > Wy. This rule conflicts with what we discussed above, so it must be that
parents are ordered based on their chain-weights including any PoRs in that block — the honest

88We’re not concerned with things like weak blocks or super-block hybrid designs; though it’s possible that
doublespend methodology for those designs has some overlap with this section.

89The memory pool is where unconfirmed transactions (and other things) are stored before they are included
in a block. Each node has their own memory pool. A miner typically decides a block’s contents by choosing the
combination of transactions from their memory pool that results in the largest reward (i.e., transactions with the
largest fees).

80 of 155

[git] = 43830880 = 2025-07-22

Aside

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

chain-segment should take priority when W4 < Wy + nw. Also, note that this is why the weight
of PoRs is attributed to the reflected block (usually a parent) rather than the block that contains
the PoRs. In essence, the inclusion of this “memory” requires that the fork rule take context into
account — particularly the context of the descendant block. This is not a paradox because the fork
rule is only used to choose the priority chain in the context of some descendant block (even if that
block is an invalid draft).

In the context of the longest PoR chain, this property is made somewhat obvious.

4.10.4 Testing the Confirmation Equivalence Conjecture

Let’s test the Confirmation Equivalence Conjecture.

4.10.4.1 Hypothesis

The hypothesis is that: doublespends against an individual simplez-chain in an N-chain simplex
after C local confirmations are as hard as doublespends against a traditional blockchain after C - N
confirmations.

First, define P(q;c), where ¢ is the number of confirmations and ¢ is the proportion of global
hash-rate controlled by the attacker, to be the function that returns the probability of an attempted
doublespend succeeding on a traditional blockchain according to Rosenfeld’s analytical solution”":

L= (") —), ifg<p

. (30)
1 otherwise

VcG{l,Q,...}:P(q;c)—{

)

Next, we will declare a new function, P’, and assume that it exists and is measurable. Particularly:
P'(q;c =C; Ny = N) is the probability of a doublespend attack succeeding against a simplex with N
simplex-chains after C confirmations, given an attacker with ¢ proportion of the network hash-rate.
We do not know the definition of this function, but we can measure its output.

As a base case, it is taken that:
P(gic) = P'(g;e; Ny = 1) (31)

Note that a simplex of 1 chain (the O-simplex) is a traditional blockchain. So we can take
Bitcoin for example: the probability of an attack succeeding after 6 confirmations is given by
P(g;c=6) = P'(¢;c=6;N; =1).

One prediction of the hypothesis is that the probability of a successful attack against a simplex
with N simplex-chains after C confirmations is equal to that of a successful attack on a traditional
chain after C - N confirmations. That is:

P'(g;c=CN;N; =1)~ P'(g;c=C; Ny = N) (32)

In fact, we can take this further. The relationship that exists is not only at the extremes, but
between them too”! — it must be if confirmations are equivalent. This is the extended CEC:

N
Vae{l,...,N}: P (q; c= C—;Nl = a> is approximately constant
a
CN (33)
= P’(q;c: T;Nl = a) ~ P(¢;¢c=CN)

90 Analysis of hashrate-based double-spending (Meni Rosenfeld; 2012)
91Gince CN/a, where a is the number of simplex-chains, in Equation 33 is not necessarily an integer, we’ll assume
there exists a valid generalization of Rosenfeld’s solution for ¢ € Rsq.

81 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv

4.10 Simplex Security and the Confirmation Equivalence Conjecture

Notice that we don’t need to know a closed form of P’(q,c, N1) to test the CEC: all cases that we
can measure are equivalent to some other, traditional case, and we can convert between them.”?
This is the basis of the method used to test this hypothesis.

If Equation 33 is correct, it indicates that there exists a generalization of traditional blockchains
(which have Ny = 1); particularly, that there is another dimension (Np; the size of the simplex)
which is geometrically related to the first dimension, c.

Note: this experiment does not test the conversion of chain-work — the same hashing algorithm is
used for each simplex-chain and no conversion of work takes place.

4.10.4.2 Method

I have implemented a simulation of a blockchain network that is suitable for this experiment.
Particularly:

¢ The implementation is modular. It supports multiple: attack strategies; blockchain data
structures; hashing algorithms (for PoW); and fork rules.

e An executable is produced that can run a single instance of a simulated attack, and takes a
variety of parameters. (This is looped through via bash script to obtain CSVs of the results.)

o The implementation supports both traditional blockchains (N7 = 1) and PoR/simplexes.
o It is fast.

The source code for this model blockchain network is contained in the /experiments/por-sim-rs/
folder of this paper’s repository.

While the simulation supports blockchains with single-parent blocks and a “longest chain” fork rule,
these were not used in this experiment. Rather, multi-parent blocks were used (which simulates
both GHOST and block-DAGs), along with the weight-based fork rule — these are required by UT.

Table 4: Table of parameters necessary to generate the main CEC experimental results. Only those
parameters marked as variable were altered while generating the main results. Some parameters
are omitted as they are not directly relevant to this experiment.

Parameter Variable Significance

q (ratio) Yes Attacker’s proportion of the global hash-rate.

¢ (confirmations) Yes Work-equivalent of ‘c local confirmations’ waiting time.

N; (chains) Yes The number simplex-chains (N7 = 1 for traditional blockchains).
B; ' (ticks) No Artificial units of time used by the DAA.

DAAy (blocks) No The number of blocks over which the DAA operates.

H (hashes) No The network-wide average hashes per chain per tick.

When choosing values for B f71 and H, we want them to be low enough for the simulation to be
efficient, but large enough to ensure that there are no issues with limits-of-accuracy. To this end,
both were chosen to be 75. This means that, prior to the doublespend attack beginning, the average
difficulty is around 5625.

We also want to consider DAA — but there isn’t an issue of precision in this case. The DAA
used”® adjusts every block, so lower values of DAA ; mean the DAA is more reactive to a drop

92This is not strictly true: Rosenfeld’s solution requires an integer value for c. This is due to his solution assuming
a static difficulty and the longest-chain fork rule; the construction is consistent with Bitcoin (provided the difficulty
doesn’t adjust), but not with chains that recalculate difficulty every block. Additionally, when using work instead of
height as the measure of an attack’s success, fractional values of ¢ have real meaning — especially with a reactive
DAA and Ni > 1. Both factors turn out to be unproblematic for us, though. Rosenfeld’s solution has reach beyond
those assumptions and observed results converge with it for larger values of DAAN.

93The simulation uses the algorithm named DAA-2 from An Economic Analysis of Difficulty Adjustment Algorithms
in Proof-of-Work Blockchain Systems (Noda, Okumura, Hashimoto; 2020).

82 of 155

[git] = 43830880 = 2025-07-22

https://github.com/AmarooHQ/whitepaper/tree/master/experiments/por-sim-rs
https://github.com/AmarooHQ/whitepaper
https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8
https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8

Aside

Aside

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

in hash-rate. If the DAA is more reactive, then attackers need to do a little bit more work since,
on average, each of their blocks will weigh less than an honest block at an equivalent height. If
the attacker’s blocks (on average) weigh less, then the fork rule will favor an honest chain-segment
(which has, on average, heavier blocks) and the attacker will need at least one extra block for
their chain-segment be favored. The only way to overcome this, for shorter attacks or attacks
against smaller simplexes, is for the attacker to be a little bit luckier than usual. (The effect is less
significant with long attacks or attacks against larger simplexes since P’ — 0 anyway.)

This explanation — that a smaller DA A 5 means the attacker needs to be luckier — was not
something I expected. It is somewhat speculative, and is included here to explain why smaller
simplexes (3 to 10 chains) appear to have better security properties than the analytical
solution predicts, and why we should prefer larger values of DAA y if we want to match
expected results.

In essence, a shorter DA A y means that P’ approaches zero faster. Since we want to match analytical
results, we want a larger value of DAA y for this experiment — this is analogous to an assumption
of Rosenfeld’s solution: constant difficulty.

So that we match the analytical solution’s assumptions, a value of DAA y = 500 was chosen. The
most important thing is that DAA >> ¢, particularly regarding traditional chains.”*

In practice, we should seriously consider smaller values of DAA y for the security benefit.

With regards to the other values — ¢, ¢, and N7 — they will be varied as part of the experiment
so that we can generate each data-point. For each data-point, we’ll gather at least 9,000 samples
(this is indicated by “n > 9000” in these figures’ legends, where n in this context is the number of
samples).

The goal is to generate multiple data series that the CEC predicts to align. To that end, the
functions in Table 5 are measured and graphed on the same axes. If the CEC is true then we

expect: f1(z) = fo(z) = f3(z) = fa(x) = f5(x).

Table 5: Functions that will be simultaneously graphed to test the CEC. The main results are
generated for ¢ € {0.4,0.44} and C = 5. The CEC predicts: f1(z) = fa(z) =~ f3(x) = fa(x) = f5(x).

Function Description

fi(x) = P(¢;¢c = Cx) Baseline: Rosenfeld’s analytical solution (calculated)
fa(x) = P'(¢;¢e = Cx; Ny = 1) Simulated doublespend against a traditional chain
f3(x) = P'(¢;e=C; Ny = x) Simulated doublespend against a simplex

fa(z) = P'(¢;c=2C; N, = x/2) Simulated doublespend against a simplex (via CEC)
fs(x) = P'(¢;c=4C; Ny = 2/4) Simulated doublespend against a simplex (via CEC)

4.10.4.3 Error Correction Iteration

Following the initial implementation of PoR in the simulator, results were promising but did not
align with the theoretical prediction (based on Rosenfeld’s analytical derivation of P(g;c)). At lower
values of ¢ and/or Ny, the results suggested that the simulation was more secure than expected. At
higher values of Ny, P’ did not appear to approach 0, instead approaching ~0.05. This hinted at
the existence of potential errors in the simulator framework.

Given the nature of writing a simulation (compared to writing a production blockchain), many
simplifications were made. Some of these simplifications shouldn’t matter, but some might. How do

94The differential effect seems to diminish as an attack goes on, so DAA y is particularly important for lower
values of ¢. DAA N >> ¢ matters when c is small, but not so much when c is large. In other words: if the doublespend
occurs over 600 blocks, the value of DAA doesn’t matter much; but if the doublespend occurs over 20 blocks, then
the value of DAA is a significant variable.

83 of 155

[git] = 43830880 = 2025-07-22

4.10 Simplex Security and the Confirmation Equivalence Conjecture

we know if a given simplification (or implementation detail) introduced errors that were responsible
for unexpected results?

In this case, sources of error were brainstormed, and evaluated in turn based on their potential
to explain the largest sources of error. Of those, 4 major sources of error were corrected, which
incrementally brought the simulation results closer and closer to the expected results (based on the
CEC prediction). The error correction steps (including interim results) are briefly documented in
Appendix C. Those corrections were:

1. Accounting for draft reflected work (explained in Section 4.10.3)

2. Randomizing hash-rates over the simplex (p + ¢ = 1 is globally maintained)

3. Implementing the attacker’s “Bonus Block”

4. Increasing the number of blocks over which the DAA operates (DAAy = 100 — 500)

Many possible sources of error were ruled out, too, like: choice of hashing algorithm (xxh3); values
of Bfil, H, and other parameters; and implementation details like omitting certain validation
steps.

Changing the simulation based on early results is dangerous though — why should we believe
these results are valid? The answer is simple: all error corrections were motivated by making the
simulation more like a real blockchain. No magic numbers were introduced, no values were scaled
arbitrarily, simulations were not repeated to get better results, etc. Since we know that a simulation
will naturally include simplifying assumptions (and omitted implementation details), we should
expect that some of these simplifications might be significant. So focusing on, and correcting, those
simplifications does not compromise the method. Rather, the fact that these corrections were
the significant ones is consistent with the idea that the simulation is consistent with real-world
blockchain networks; that the simulation works.

4.10.4.4 Validating the Model

Amaroo Simulator Validation: Doublespend via Traditional Blockchain

Traditional Confirmations (PoR Equivalent via CEC)

0 20 40 60 80 100 120 140
\ ==y = P(q; c=5x) --- Trad: g = 0.40 (Analytical Solution: Rosenfeld, 2012)
0.8 1 |‘\ —#= y=P/(q;c=5x;N;=1) --Trad: g =0.40; B! = 75; DAAy = 500; (n = 9000)
‘\ ==y = P(q; c=5x) --- Trad: g = 0.44 (Analytical Solution: Rosenfeld, 2012)
\ == y =P(q;c=5x;N;=1) --Trad: g=0.44; B7'=75; DAAy =500; (n =9000)

Probability of a successful doublespend

0.0 T T T T — T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Confirmations+5

Figure 27: A comparison of the measured probability of a successful doublespend against a
traditional blockchain compared with Rosenfeld’s analytical solution, for ¢ € {0.4,0.44}. That the
measured results converge with the analytical solution is taken to be validation of the simulation —
i.e., it works and is useful in the context of this experiment.

84 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

At a minimum, we should expect the simulation to faithfully replicate doublespends against
traditional chains — i.e., f1(z) ~ fo(z). Results of this, for ¢ € {0.4,0.44}, are shown in Figure 27.

Figure 27 shows that the simulation does align with Rosenfeld’s solution, especially at values of
q < 0.40. It is consistent with Equation 31. As ¢ increases, statistical artifacts and other inaccuracies
do become more significant, but not enough to compromise the results — the largest differences
(for ¢ = 0.44 and ¢ = 5) are around 50 parts per thousand (Figure 28) and typically less than this.
There are more significant differences at ¢ = 0.48,%° however this is close to limiting threshold of
blockchain security in general (¢ < 0.5), so we should expect larger error in the simulation results.
Such differences are taken to be non-critical, i.e., they do not compromise the results.

4.10.4.5 Results

In this section we will only look at results for ¢ € {0.4,0.44}, though results for ¢ = 0.48 were also
generated (among other combinations of parameters). Results that are omitted from this section
are available in Appendix C.

First, do results of the simplest version of the CEC match predictions? Figure 28 graphs f1, fo, f3

and the results are consistent with predictions (Equation 32).

PoR Confirmation Equivalence Conjecture
P(q;c=C;N1=N) = P'(q;c=NC;N,=1)
If the CEC is true, then the plots with equal g should align

Traditional Confirmations (PoR Equivalent via CEC)

0 20 40 60 80 100 120 140
S
§_ \ — =y =P(q;c=5x) --- Trad: g = 0.40 (Analytical Solution: Rosenfeld, 2012)
£ 087 \\‘\ 4= y=P(q;c=5x;N;=1) ---Trad: g =0.40; By = 75; DAAy = 500; (n = 9000)
'% \ —#— y =P(q;c=5Ny=x) --PoR: g=0.40; Bf! =75; DAAy =500; (n = 9000)
° 0.6 - \\ ==y = P(q;c=5x) --- Trad: g = 0.44 (Analytical Solution: Rosenfeld, 2012)
5 0.
"g == y =P(q;c=5x;Ny=1) ---Trad: g=0.44; Bf' =75; DAAy =500; (n =9000)
g —#— y=P(q;c=5Ny=x) --PoR: g=0.44; B =75; DAAy =500; (n =9000)
3 0.4
@©
kS
>
£ 0.2 1
=
@©
Qo
o
2 0.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Simplex Ny

Figure 28: A comparison of the measured probabilities, for ¢ € {0.4,0.44}, of a successful double-
spend between: a traditional blockchain, a simplex, and Rosenfeld’s analytical solution. That the
measured results for a simplex (converted via the CEC) converge with the other results is taken to
be evidence of O(n) security and that the CEC is non-refuted.

While it appears that simplexes (for ¢ = 0.44,¢ = 5, N7 € [3,10], at least) are slightly more secure
than expected, this effect diminishes as N7 increases. As we are about to see, it also diminishes as
c increases. For this experiment, it is taken to be a non-critical error.

Second, what about the general case? Does the extended CEC hold true, also? Figure 29 graphs
f1, f2, f3, f1, f5 and these results are also consistent with predictions (Equation 33).

4.10.4.6 Conclusions

These results are, for the purpose of this paper, taken to indicate the following statements are
true”®.

958ee Appendix C.
96 Experimental results never prove that something is correct, however, they are criticisms of competing explanations.

85 of 155

[git] = 43830880 = 2025-07-22

4.10 Simplex Security and the Confirmation Equivalence Conjecture

PoR Confirmation Equivalence Conjecture (Extended)
Va€[l,N]:P'(q;c= C—a"’; N, = a) is approximately constant
If the CEC is true, then the plots with equal g should align

Traditional Confirmations (PoR Equivalent via CEC)

0 20 40 60 80 100 120 140
\ - =y = P(q;c=5x) --- Trad: g = 0.40 (Analytical Solution: Rosenfeld, 2012)
0.8 \\ == y =P'(q;c=5x;Ny=1) --Trad: g=0.40; B! =75; DAAy =500; (n =9000)
T ' l‘\ —#— y =P(q;c=5Ny=x) --PoR: g=0.40; Bf1 =75; DAAy =500; (n = 9000)
g \ \ ==y = P'(q; c=10; N, = x/2) --- PoR: q=0.40; Bf‘1 =75; DAAy =500; (n=9000)
% “ —e— y = P'(q; ¢ =20; Ny = x/4) --- PoR: g =0.40; B/ = 75; DAAy = 500; (n = 9000)
3 0.6 - \‘ ==y =P(q;c=5x) --- Trad: g = 0.44 (Analytical Solution: Rosenfeld, 2012)
g N ==y =P(q;c=5x;Ny=1) --Trad: g=0.44; Bf' =75; DAAy =500; (n =9000)
"am,,: \ \ ==y =P'(q;c=5;N; =x) --- PoR: g =0.44; B,‘1=75; DAAy =500; (n=9000)
S y = P'(q; ¢ =10; Ny = x/2) --- PoR: g =0.44; B7* =75; DAAy =500; (n =9000)
E 0.4 y = P'(q; ¢ =20; Ny = x/4) --- PoR: q=0.44; Bf1 =75; DAAy =500; (n = 9000)
kS
Py
E
©
S 0.2
a
0.0 ! —
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Simplex Ny

Figure 29: A comparison of the measured probabilities, for ¢ € {0.4,0.44}, of a successful double-
spend between: a traditional blockchain and multiple simplexes converted via the CEC. That the
results converge as predicted is taken to mean that the extended CEC is non-refuted.

Sharing PoW security between blockchains without merged mining is possible.
PoR works as claimed when implemented correctly.

The Confirmation Equivalence Conjecture is, generally and in principle, true.

= W o=

Simplexes are secure against a minority attacker and are thus O(n) secure (assuming no
relevant bottlenecks).

4.10.5 Closed Form of P’

Deriving a closed form of P’ from first principles would be challenging. But perhaps we don’t need
to. First, let’s consider the PoR graph without all the additional context of PoR and different
simplex-chains — what is it? It is, more-or-less, a fairly-streamlined block-DAG. If we assume there
is no latency, and thus there are no siblings or ‘stale’ blocks, then we expect a form similar to a
traditional blockchain (with a very short block period). From this perspective, it is fairly obvious
that we should expect P ~ P’ — they’re trying to describe the same thing.

The block-DAG nature of the PoR graph may seem complicate the derivation, too, until we notice
that comparisons between linearized slices of a block-DAG work exactly the same as comparisons

For example: we see that these experimental results converge as expected. This fact is NOT evidence that UT is
secure, or that PoR works, or that the CEC is right. But, it is a pre-emptive criticism of ideas like: The simulation
does not work, or PoR is broken, or Simplexes aren’t secure, or Sharing security between blockchains is impossible. A
decisive criticism of UT/PoR/CEC must therefore explain how these results are wrong — the explanation needs to
include a refutation of these results. Such a refutation could be an explanation of how: the implementation was
flawed, the methodology was flawed, or that UT cannot be effectively implemented as a production blockchain.
No such explanations are currently known. In the absence of such criticisms, it is reasonable to work under the
assumption that UT is secure, since PoR works and the CEC is true are currently (to my knowledge) the only viable
explanation for these results.

86 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

between traditional chain-slices: which is heavier? Moreover, the order of blocks in the linearization
doesn’t matter since all block-weight is counted (and addition is commutative). Only the final
comparison between the attacker’s slice and the honest slice matters.

Therefore, we can use Equation 32 for the substitutions ¢ — CN, then P — P’, then C — ¢; N —
N; — n to arrive at a closed form. These substitutions are important because they change the
arguments of P and P’ without changing the algebraic description. Practically, in Equation 30, we
are replacing ¢ with cn.

L= (M) g™ = M), ifg <p

: (34)
1, otherwise

Vc,n€{1,2,...}:P'(q;c;n):{

Like Rosenfeld’s derivation, this closed form comes with some assumptions. For example, we inherit
the assumptions that the block period of all simplex-chains is identical and that the difficulty
remains constant through the attack. Experimentally we found that randomizing the attacker’s
hash-rate over the simplex was required to match the results of the CEC, so this appears to be an
assumption of this closed form, t0o0.””

4.11 Intra-Simplex Cross-Chain Transactions
4.11.1 Introduction

Our goal in this section is to find a method for cross-chain transactions between any two simplex-
chains that is safe, fast, succinct, and reliable.

o Safe: an adversary must perform a 51% attack to execute an invalid cross-chain transaction.

o Fast: O(t) < O(N\) = O(1), where: ¢ is the maximum delay between a cross-chain transaction
being confirmed by a simplex-chain and the point at which the destination simplex-chain
allows processing that transaction; A is a security parameter (e.g., A = 4 local confirmations).

o Succinct: for any cross-chain proof m, O(7) < O(c) and || is practical.
e Reliable: the above properties hold for all transactions in all simplex-chains.

Given everything we have discussed up to now, it’s not clear how cross-chain transactions are
possible. The problem is that miners on one simplex-chain do not validate the state transitions of
other simplex-chains. Each simplex-chain, locally, has an O(n/c) share of the network’s security
(assuming there are O(c) many chains). An O(7/c) adversary could theoretically produce all of the
blocks for a single simplex-chain (e.g., by mining at a slight loss to push other miners out). The
adversary could then create a very long chain of blocks that have valid headers, PoRs, etc, but
also contain one or more fraudulent transactions. Perhaps the main chain eventually corrects to a
non-fraudulent history (similar to Section 4.8.3) — but in that case we’d need to wait a very long
time to be sure that such a correction must have happened. That violates the fast goal, so this
eventual-correction idea fails to meet our overall goal.

Are we stuck? For a blockchain network to be scalable, it must be the case that miners are not
required to validate more than one chain! Have we come all this way, attempting to deal with the
core conflict of the trilemma, only to find that we just moved the conflict?

4.11.2 Why does SPV work for Bitcoin?

For the sake of simplicity, let’s consider Bitcoin in isolation. Particularly, we’ll assume that there
are no other networks of similar size using the same PoW algorithm or compatible mining hardware.

A concise argument for the security of Bitcoin-SPV proofs is:
P.1 An SPV proof is a merkle branch proving that a transaction exists in a block.

P.2 All blocks are part of the same blockchain and history.

97 Additionally, the simulation showed that attacks were less effective when the attacker’s hash-rate was uniformly
distributed over the simplex. See Section C.2.3 for more details.

87 of 155

[git] = 43830880 = 2025-07-22

Note

4.11 Intra-Simplex Cross-Chain Transactions

P.3 All transactions that occur are in some block’s merkle tree.
P.4 If a transaction is invalid, then the block is invalid.

P.5 If a block builds on an invalid block, then it is invalid.

P.6 If a miner produces an invalid block, they get no block reward.
P.7 = Honest miners won’t produce or build on invalid blocks.

P.8 = For an adversary to produce an apparently valid (but fraudulent) proof leading to a
main chain block, they’d need to out-compete honest miners (i.e., 51% attack the network).

P.9 = Only valid transactions exist in the main chain.”®
P.10 = 1It’s safe to accept SPV proofs for blocks in the main chain.
It appears that point 8 is our current sticking point for Simplex-SPV proofs.

But, we don’t necessarily need to replicate point 8 if we could get to point 9 by other means.

4.11.3 Method

The details below are an overview of Amaroo’s cross-chain protocol. Full details comprise
the Amaroo team’s forthcoming paper on the subject.

4.11.3.1 Context

The purpose of UT’s cross-chain protocol is to maintain coherence between simplex-chains. This
means that all the essential properties we’d expect to hold for transactions on a single chain should
hold between chains, too: coins are not created nor destroyed””, coins can only be spent once, the
transaction executes entirely or not at all, etc. There will obviously be some particular properties
that are different, such as a delay between inputs being spent (on the sending chain) and outputs
being created (on the receiving chain).

Before we address how cross-chain transactions will work, we first need to remember the context
in which we’re operating. Leading up to this point, we’ve constructed a network with some
wildly different properties to traditional blockchains: ultra-fast confirmations, additional DoS and
censorship resistance, shared security, higher order scaling, etc. These improvements are due to the
specific combination of: Proof of Reflection, the use of chain-like block-DAGs in the PoR Graph
and each simplex-chain, and the Axioms of Availability, Maximal Reflection, and Unified Ancestry.
Each of these ideas, along with fraud proofs, will have a role to play in the cross-chain protocol
described shortly.

Additionally, we are concerned about some possible attacks aimed at the cross-chain protocol. We
are not necessarily concerned about how the protocol resolves during a 51% attack in this discussion
since we already know that the network does not function in that context.

The first and most important thing to consider is Under which circumstances can cross-chain
transactions be invalidated? If it is possible to invalidate a past cross-chain transaction, this could
be used to perform a doublespend, or coin duplication, etc. Therefore, we should strive for a
protocol that only permits such invalidation under a 51% attack (or worse). That way, we can be
confident that the cross-chain protocol is not the weakest link in the chain, since local (intra-chain)
transactions break down at that point, anyway.

98This isn’t the full picture for some blockchains (e.g., Ethereum), even though SPV still works for them — a
transaction that fails to execute can still be valid and produce a valid state transition. In these cases, an invalid
state transition implies an invalid block, so it’s customary to prove that some state has the right values rather than
that a transaction exists.

99That isn’t to say burning coins isn’t possible, but it should never be an unintended byproduct of a cross-chain
transaction.

88 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

The obvious way to invalidate a cross-chain transaction is to cause a reorganization on the origin
chain. If the pivot of the reorganization is antecedent to the cross-chain transaction, then it is up to
the attacker whether that transaction is included in the resulting canonical history. This outcome
is self-evidently insecure. Therefore our question about cross-chain transaction invalidation has the
same answer as questions like Under which circumstances can a simplex-chain reorganization occur?
We are also concerned with the parameters around such a reorganization: Is it dependent on the
number of confirmations?, If so, how many?, What proportion of global hash-rate is required?, etc.

Fortunately, we’ve done a lot of the legwork already to prove that the ordering of simplex-chain
blocks is stable and works for cross-chain transactions. Proof of Reflection allows us to share security
between simplex-chains. Block-DAGs and the PoR Graph provide some censorship resistance, and
more importantly, are the basis for both the Axiom of Maximal Reflection and the Axiom of Unified
Ancestry. These axioms go on to, respectively, bind the histories of each simplex-chain to one
another and ensure that each chain’s history spans all valid blocks of that chain in the PoR graph.
The binding of histories is the basis for the coherence of the simplex, and PoR graph-spanning
histories ensures that the ordering of blocks within each chain conforms to the ordering of blocks in
the PoR graph. Therefore: to change the order of blocks within a simplex-chain requires that an
attacker change the global ordering, which in turn requires a 51% attack. W

Regarding network security, resisting this particular attack is paramount because this kind of
reorganization affects honest nodes. By comparison, there are other attacks that do not affect
honest nodes, but do affect, say, light clients.'’” These other attacks aren’t as concerning provided
that they only affect non-validating network participants. But! What happens when an invalid
block is mined? It will be reflected, because miners of other simplex-chains do not validate the
block. What we need is a method of error correction — one that is fast enough to ensure invalid
blocks are dealt with before the cross-chain protocol allows those blocks to be processed. This role
is filled by fraud proofs.

In UT, fraud proofs are automatically constructed by any full node during normal validation — the
state transition function will return either a new state trie or a fraud proof. Once a fraud proof
is constructed, it is broadcast similar to a transaction. Then, any miner from any simplez-chain
can validate and include the fraud proof as part of the PoR graph. Due to Unified Ancestry, every
simplex-chain calculates the expected chain-tips for every simplex-chain. When a fraud proof
invalidates a block, the calculated chain-tips for a given simplex-chain are updated to exclude
any invalid blocks from that chain’s history. Thus, as long as fraud proofs are readily generated,
broadcast, and included by other miners, the PoR graph knows which blocks are on-main valid
blocks, and which are not.

There is, of course, some lag between an invalid block being mined, the fraud proof being generated,
and the proof being included in the PoR graph. In a healthy network, the expected delay is
(N1By)~! + o seconds, where o is a little overhead to account for the first node of that chain to
receive and process the block. This is much less than a block period — even when a minority of
miners are honest (particularly when Ny > p~1).

4.11.3.2 Construction

Typically, a cross-chain protocol will require two user interactions: one on the sending chain and
one on the receiving chain. That is, there is some state modification on the first chain, and then,
on the second, an acknowledgment of that and some associated action (like crediting an account).
Based on the direction of information, order of actions, and the focus on those actions, we could
describe these kinds of methods as push-pull methods. Information is ‘pushed’ from the sending
chain, and, at some later point, ‘pulled’ into the receiving one — conceptually, at least. In practice
the ‘pull’ requires the user to publish a proof about the sending chain to the receiving chain.

By contrast, a push-push method would be one where the receiving chain automatically processes
the cross-chain output at the correct time. This means that no second action from the user is

1001y this context light clients are not considered honest nodes (nor attacking nodes) since they do not contribute
to global consensus.

89 of 155

[git] = 43830880 = 2025-07-22

4.11 Intra-Simplex Cross-Chain Transactions

required. Such a system must therefore require miners to process cross-chain transactions — but
how do they know about transactions on other chains and whether they are valid? In our case,
the Axiom of Availability means that all miners on all simplex-chains have all recent blocks from
all other simplex-chains. Our use of fraud proofs means that all honest nodes quickly learn of
invalid blocks. Thus, provided enough time has passed, we can be confident that miners know of all
cross-chain transactions, and that they are, in fact, valid.

How long should we wait, and how do we measure how long we’ve waited? We need at least some
delay to avoid a particularly lucky series of blocks from triggering cross-chain processing. Ideally,
this processing should be as predictable as possible, and well distributed. We also want to avoid
our delay method from being manipulated to cause earlier or later execution.

The delay duration itself is almost unconstrained: fraud proofs both propagate through the network
well within one block period (at which point honest nodes are aware of them), and are included in
the PoR graph within a block period, too. However, if we pick too short a period, then we risk
some fragility in the network. We can technically recover if an invalid cross-chain transaction was
processed before a corresponding fraud proof was recorded, but doing so robs honest miners of
their block reward. So, whatever we pick, it needs to be something that is conservative enough for
miners to be comfortable with.

Although it’s somewhat arbitrary, 60 seconds (or 4 block periods at By = 1/15 Hz) seems like a
reasonable choice. There is plenty of time for the fraud proof to propagate and be recorded, and
the risk of an honest miner’s block being invalidated is low.

How do we measure this duration, then? We could use block timestamps, although that may open
us up to some kind of time-warp attack. We could use the number of confirmations on the sending
or receiving chain, but there’s local block variance to consider. We could use the change in volume
of the simplex (i.e., the number of confirmations over all simplex chains since some block), but we
don’t have any guarantees about the progression of either the sending or receiving chain. Each of
these has disadvantages, but if we take these breakpoints together, then we have a reliable single
condition.

We can now summarize; when drafting an L block, the R blocks which are valid for cross-chain
processing from the draft block’s perspective are those which:

Have not been processed before; and

Have a timestamp at least A\ block periods in the past; and

Have a volume at least N1 blocks fewer than this block’s volume; and
Are in the PoRs history of this block’s A-parent'?'; and

Are at least A local confirmations deep.

G o=

These conditions are illustrated in Figure 30.

There is one slight oversight in this formulation that we need to fix. How do we know that the
transactions in those blocks to be processed are all consistent? If we naively collect blocks according
to the above conditions, then we don’t — there might be conflicting transactions in off-main blocks.
To correct this, we first use the four conditions to find the 1-4 most recent corresponding blocks
(some conditions may resolve to the same block). Next, for chain R, we find the on-main MRCA
(most recent common ancestor) of those blocks — this is the most recent block that will be processed
for cross-chain transactions. We repeat this process for the parent of the draft block to find its
corresponding MRCA by the same rules. Let’s call these blocks R, and Rg respectively. The set of
blocks to process is: R, and all on-main blocks in its history minus Rg and all on-main blocks
in its history. This is the on-main “chain-slice” from R, (inclusive) to Rg (exclusive). Since all
of these blocks are on-main, any valid transactions from off-main blocks between R, and Rg will
be included in one of the on-main blocks. By inspection, we can observe that Rg for the current
block was R,, for the parent block (or an earlier ancestor). By induction, this series of chain-slices
continues all the way back to the genesis block (before which no chain-slices exist). Therefore,

101 Definition: the 1-parent is the parent; the 2-parent is the parent of the 1-parent; the (k 4 1)-parent is the parent
of the k-parent.

90 of 155

[git] = 43830880 = 2025-07-22

Aside

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

By ~1) elapsed

N3\ volume growth

A blocks 1 3

(—’Rj,ms (—’Rj,,\‘(— (_

! A blocks !

Figure 30: The conditions used to find R blocks that are valid for cross-chain transaction processing
from the perspective of L;. Particularly, we find up to 4 distinct blocks via 4 different paths.
Note that these blocks can appear in any chronological order, and the specific blocks shown in the
diagram are just one example of many possibilities. In this case, A block periods ago resolves to
R;j_4,; volume at least N\ blocks fewer resolves to R;_,,; the A\-parent of R; resolves to R;_y;
and the A-parent of L; resolves to L; .

every on-main block (and thus every valid transaction on that chain) is processed for cross-chain
transactions at the earliest appropriate time.

The protocol for processing cross-chain transactions is now, simply: when drafting an L block, for
each R chain, miners gather the chain-slice (of R blocks) that is valid for cross-chain processing,

scan those blocks for incoming cross-chain outputs, and include those cross-chain outputs in the
draft block.

In practice, these conditions aren’t ideal because updating the reflections of a draft block
may introduce new blocks which are valid for cross-chain processing, in turn requiring a
complete recalculation of that block’s output state. To avoid this, we replace item 4 and
item 5 with similar conditions based on the draft block’s parent and A — 1. This keeps the
set of blocks stable when updating the reflections of a draft block.

4.11.3.3 Evaluation

Safe Double-spending a cross-chain transaction requires a 51% attack on the entire network.
Executing an invalid cross-chain transaction is not possible when there are honest nodes of that
simplex-chain and honest miners of any simplex chain.

Fast Cross-chain transactions are processed based on conditions which are all O(1) with respect
to time, and therefore the expected delay in execution is O(1).

Succinct No proof is explicitly recorded. If one did want to craft an explicit proof 7, then it
would be similar in size to a normal transaction proof (assuming headers from the surrounding PoR
graph are available). Normal transaction proofs are O(log ¢), therefore, O(m) = O(logc) < O(c).

Reliable The consensus protocol requires that cross-chain transactions are processed if they
are valid for cross-chain processing. Not doing so invalidates a block. Therefore, all cross-chain
transactions on all simplex-chains will have these above properties.

Censorship Resistance This construction has a curious property. Say that an attacker, in an
effort to perform an empty block DoS, is mining a simplex-chain at a loss, and has pushed out other
miners. If you wish to make a local transaction, it could take much longer than a block period. An
alternative is to make a cross-chain transaction to that simplex-chain from another simplex-chain

91 of 155

[git] = 43830880 = 2025-07-22

4.11 Intra-Simplex Cross-Chain Transactions

instead. This will obviously take a minute or so to execute, but you will have a guarantee that it
will be processed — the attacker cannot continue the attack without processing that cross-chain
transaction. You could then ‘rescue’ your coins and send them to a more useful chain.'’? While
this describes an unpleasant user experience, the takeaway is that it is yet another obstacle for an
attacker to overcome.

4.11.4 Decoupled State Progression

The key to cross-chain transactions working is the decoupling of state progression combined with the
property that cross-chain transactions can be read from R blocks without needing to validate the R
chain — if it exists, then it is valid. Since part of this protocol involves asynchronous communication
between chains, we need a method of error correction to ensure cross-chain transactions are safe:
fraud proofs. Crucially, we expect that honest nodes (particularly those on other chains) are never
fooled by an invalid block for long — much less than a block period. On this basis we can pick a
safety parameter A which (in combination with the conditions from earlier) provides enough buffer
to ensure that the PoR graph remains coherent.

This decoupling is the essential component of UT that makes O(c?) scaling possible, and is a direct
result of how we use PoR to create the PoR graph. The procedural elements are shown in Figure 31.

102This kind of operation would require some support from the transaction layer, e.g., a way to spend inputs
indirectly. Such an output type would also need to contain instructions in case of a failure, since the sending chain
cannot verify that the inputs to be spent (on the receiving chain) will be spendable when the cross-chain transaction
is processed. Since we must scan blocks as part of the cross-chain processing, the branch taken should also be
recorded in the block, alongside the corresponding output or transaction.

92 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Action ALl AL} ALl 1 AL2 Action
Receive :
New Block :
Discard | Fail Check | Good PoW |
— '
as Junk Header !
Unreadable; Fail Check | Good Form
FP or Junk Form \
Tnvalid; Fail Check |
FP or Junk PoRs !
Valid
Add to PoRs !

PoR Graph ! | Check | Good | Progress

' | State State State
Add FP to Good FP Fraud | ! Fail
PoR Graph Proof | !
V" ' V"
O (C) Decoupled O (C2>

PoR Graph Progression

nodes of that chain perform the associated action.

[git] =

93 of 155

43830880 = 2025-07-22

Blockchain States

Figure 31: Flow chart of how the segmentation of state works in UT to achieve O(c?) capacity.
“AL” is short for “Action Layer”, a term invented here so that we can point to the various stages of
PoR graph extension and state progression. AL! columns indicate actions that validating nodes
of any simplex-chain perform on the PoR graph. The AL? column indicates that only validating

4.11 Intra-Simplex Cross-Chain Transactions

4.11.5 Fraud Proofs & Bribe Attacks: Derivations & Breakpoints

Let’s assume that an attacker is willing to bribe miners to exclude a fraud proof. The goal of the
attacker is to continue this attack beyond some breakpoint, so how much will that cost them over
the course of the attack?

First, let’s establish a baseline: what does a healthy simplex look like? Healthy meaning: no fraud
proof is possible because all blocks and state-transitions are valid. We need to know what a healthy
simplex (and its PoR graph) looks like because a successful attack will start off indistinguishable.

The defining quality of a healthy simplex is that additions to the PoR graph are highly interconnected.
When new blocks are mined, they reflect all possible remote blocks and link back to all possible
local blocks. Thus, there should be no partitions or asymmetric boundaries.

An asymmetric boundary emerges when a group of miners contributes exclusively to a subgraph of
the full PoR graph (i.e., the subgraph that censors the fraud proof). The asymmetric boundary lies
between the full (honest) PoR graph and the dishonest subgraph.

When an invalid block is mined, individual nodes of the network should rapidly become aware
of the fraud proof — and we expect this if the P2P layer is working correctly. However, during
an ongoing (successful) attack, that fraud proof is not recorded in the PoR graph. The fraud is
‘invisible” when considering just the blockchain data itself, which means that SPV proofs and the
like may be fraudulent.

When fraud is detected, the PoR graph should proceed through multiple phase changes until
normality is restored (Figure 32).

. PoR Graph Fraudulent 1. Attack FP first 2. Partial FP
ooks Healthy block mined In Progress recorded Acknowledgment

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

I PoR graph now 3. Complete FP FP ‘pollutes’
resynchronized Acknowledgment PoR graph

= o

Figure 32: The phase transitions of a PoR graph when fraud occurs. The dashed outline around
phase 0 and 1 indicates that it’s not possible to observe this phase change on-chain. Nodes connected
to the P2P network should be aware of the fraud, but no chain has yet included the fraud proof in
the PoR graph.

An attacker always fails if the network reaches phase 3. The attacker’s primary goal is to prevent
the network transitioning from phase 1 to phase 2.

The dynamics of the attack change for both the attacker and each miner during each phase.

For example, there is a qualitative difference between phase 1 and phase 2, and it is in the attacker’s
interest to prevent the network transitioning to phase 2 if possible. Therefore it is most valuable
for the attacker if they can prevent the FP being recorded. It is also more profitable for miners,
since the size of bribes grow quadratically.

Once the network has reached phase 2, it is only a matter of time before the network reaches phase
3, at which point we are back at the start.

If the network is kept in phase 1, then the PoR graph and (nearly all) chain data is indistinguishable
from a healthy simplex.
4.11.5.1 Phase 1 /4~ Phase 2 on the Target Chain

The first honest block on the target chain must, by definition, link back to the fraudulent block
as an invalid ancestor. Let’s assume that there’s a reward (C,H) for publishing the fraud proof,
where C,. is the block reward of the target chain, and H is the proportion of the block reward each

94 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

miner gets. The additional reward for this block after k attacking blocks is C,. Hk. Thus, after H !
blocks, the effective block reward for an honest miner will have doubled.

A new honest block thus becomes heavily incentivized over time.

To mitigate this, the attacker must raise the difficulty on the target chain such that all other
potential miners find it comparatively unprofitable.

Compared to mining honestly, the attacker forgoes the reward of C,Hk for the k" block. That
reward is lost to excessive work securing the target chain which would otherwise earn the attacker
that much revenue from publishing the fraud proof. Additionally, the attacker loses the block
rewards each time — so these losses are C,.(1 + Hk) per block after k blocks. Let C, - l,, represent
the total losses due to mining, and z the number of blocks for the attack: factoring out I, in this
way allows us to analyze the situation independent of the block reward. In order for the losses [,
to be greater than the rewards, we must have:

Ly > 1+ Hk
>o(1+ H)
=z+1+HY k

k=0
z(z+1)

= 1+ H
z+ 1+ 5

(35)

Additionally, the rise in difficulty of these blocks presents a practical limit for the attacker. When
k > qgH~'N; the attacker is, by definition, unable to keep up the attack. That is because, at that
point, the attacker’s losses are C,.(1 + H(qH 'Ny)) = C.(1 + ¢N1). Assuming an even hash-rate
distribution, C, N1 (p + q) represents the sum of all block rewards over the network. Therefore, the
maximum output (measured in coins) of ¢ proportion of the hash-rate, by definition, is C, N1q. An
attacker must have additional support to maintain this portion of the attack — when the mining
losses per block (approx C.HEk) exceed the attacker’s mining capacity (C-N1q).

CTHZ < CTqu
z < qH'N; H>N"!

z < qN;? (worst case)

If Ny = 100, then no attack is viable (without help) after 5000 blocks, unless ¢ > 0.5. At that
point, at least 50% of the network hash-rate needs to be dedicated to the target chain to make it
unprofitable enough to dissuade honest miners.

4.11.5.2 Phase 1 4 Phase 2 and B(z)

To prevent the network transitioning from phase 1 to phase 2, the attacker incurs a cost. We can
define this cost in terms of the block reward. Let the total cost to the attacker, in the &*" round, be
C\.Zy, coins. (Zy, is the cost in block rewards.)

o Each miner (on each simplex-chain) needs bribing (but only if they make a block).

o Each round, the attacker must pay C,.Zy in bribes (where Zj is the bribe as a multiple of the
block reward, and k is the round, starting at 1).

o These bribes are given to (N7 — 1) miners (we subtract 1 to exclude the target chain from
this split). One bribe per R-chain.

o However, an attacker with ¢ proportion of the hash-rate can recover q(N; — 1) of these bribes,
at most, and thus loses at least p(N; — 1) of them.

¢ A miner receives C,Hk coins as a reward for publishing a fraud proof that invalidates k
blocks.

95 of 155

[git] = 43830880 = 2025-07-22

4.11 Intra-Simplex Cross-Chain Transactions

e Each round, miners can choose to publish the fraud proof, which earns them C, Hk in rewards.
e Thus, each round, miners have an opportunity cost of C,. Hk if they do not take the bribe.

e This only makes rational sense if the miner’s bribe is greater than their opportunity cost:
C.Zy/(Ny — 1) > C.Hk; and the miner is guaranteed to receive the bribe, regardless of
whether the attack succeeds.

o The attack lasts z rounds.
e Let C, -1, be the total losses due to bribes.

Therefore, for the bribes of round k& to be more than the rewards on all chains, we must have:
Zy > kH(Ny — 1)

Let I, =p(Z1 + -+ + Z.) denote the expected cost of the attack for the z rounds. Substituting in
the above:

I >pH(Ny = 1))k
k=1
z(z+1)

lb>pH(N1—1) B

(36)

Let B(z) denote the minimum cost of the attack for z rounds, given our current understanding.
Combining Equation 35 with Equation 36, and noting that p + g = 1 yields:

(z+1)

B(z) =l + (0 + Q) > HNip+)= 4241 (37)

Observe that this is a lower bound on B(z). To reduce complexity, we’ll also define B in terms of
the block reward (i.e., in units of block rewards rather than coins). We can come back to it later if
we need to.

z(z+1)

B(z) =17 5

+z41 where n = H(N1p + q) (38)

We should also note the inverse of B, which gives us a lower bound on the number of blocks for
which we should wait, given a total outgoing value, v (expressed as a multiple of the block reward).

(n—2)2 48w —mn—2

IB%*I(U) = o

where n = H(N1p + q) (39)

4.11.5.3 Phase 1 — Phase 2

The network transitions from phase 1 to phase 2 as soon as a first miner produces a block that
includes the fraud proof.

Once this happens, an asymmetry emerges: honest blocks (which acknowledge the fraud proof)
produce proofs of reflection that are not usable by the dishonest miners. If the dishonest miners
tried to use those PoRs, they’d produce invalid blocks unless they also acknowledge the fraud proof.
Thus, using those PoRs effectively turns dishonest miners into honest miners.

4.11.5.4 Phase 2 — Phase 3

The duration of this transition depends on the proportion of honest miners: h. Let’s define h via
h+d =1, where d is the proportion of dishonest miners, including the attacker.'”® Since d includes
the attacker, we can say d > ¢, and h < p.

103Dishonest miners are those which will accept a bribe and participate in the fraud proof censorship attack, but
are not necessarily controlled by the attacker directly. We assume that there are some miners that would accept a
bribe for this attack, but not for any attack.

96 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Similar to Section 4.8, the asymmetry between honest and dishonest miners means that, even for
a small h, the chain-weight of the honest chain-tips will eventually dominate the chain-weight of
dishonest chain-tips. After that point, each simplex-chain’s main chain will include the fraud proof,
and the dishonest chain-tips will never be able to out-weigh the honest ones.

Let us use a vector to represent the weight of the honest and dishonest chain segments (relative to
their most recent common ancestor). This is purely for convenience so that we can analyze both at
the same time. The top row is the weight of the honest chain segment, and the second row is the
weight of the dishonest chain segment. At the start of the attack (¢o), neither chain segment has
any blocks, so to = 0.

Each round (block period), we expect that h proportion of new blocks are honest, and d proportion
are dishonest. So, after 1 block period, we expect:

Nih h
e[] 4]

After 2 block periods, the h proportion of new blocks that are honest can use PoRs via the dishonest
blocks. Due to the asymmetry, the dishonest blocks can not.

e [0 w4 o 4] - [457

Each round, the honest chain segments grow by the weight of Ny blocks, but the dishonest chain
segments grow by Nid blocks. Therefore, at the k** round, k > 2:

e V] oo [1]
observe: t, = ty_; + 1NV, [;] for some i € [1,k)
seti=k—1 = tp=t1+Ni(k—1) _ cll]
tkle[Z]—i-]\h(k—l)[}i}
Stk =N [h+dk;€_1 } (40)

Thus, the honest chain-tips dominate when

h+k—1>dk
k—dk>1—h
E(l—d)>1—-nh
hk>1—h
E>ht—1

If h = /Ny, i.e., for each honest miner there are (N7 — 1) dishonest miners, then this inequality
becomes: k > Ny — 1.

If only 1% of miners refuse the bribe (h = 0.01), and that the other 99% of miners continue to mine
only blocks that do not include the fraud proof, then we have: k& > 99.

If we assume an honest minority of substantial size, h = 1/3, then k > 2. That is, the honest
chain-tips are expected to dominate after 2 block periods if 1/3 of miners are honest.

97 of 155

[git] = 43830880 = 2025-07-22

4.12 Expedited Transactions

4.12 Expedited Transactions

In Section 4.7 we saw that UT’s confirmation rate was O(c), and that the expected confirmation
time was O(c™1). This is how long a user waits for a transaction to go from newly to fully confirmed.

In those calculations, we did not account for the time between the initial broadcast of a transaction
and its inclusion in a block. To account for the duration of the whole the transaction’s journey, we
need to consider: broadcast latency (¢), the block period of the local chain, and the confirmation
rate of the simplex as a whole.

rx—1

1
TimeToXConfirmations(z) = ¢ + 35, + N5,

This process, end-to-end, is thus O(¢ + 1+ ¢71) = O(1) > O(c™!). Can we do better?

Ideally, we’d want the time to first confirmation (TTFC) to be as short as possible — currently it
is the bottleneck, after all. Naively, our first idea might be to use cross-chain transactions somehow:
there are ~N; chains that are potentially sending transactions, so that could provide the necessary
coefficient to bring down the TTFC. This intuition does have some merit: we’re going to need to
use the other chains if we want a transaction to be ‘confirmed’ during the period between blocks of
whichever chain the user is operating on. However, cross-chain transactions are way slower than
we're seeking as they already wait for some number of confirmations.

We must also consider a crucial difference between local or cross-chain transactions and whatever solu-
tion we come up with: whether a transaction is spendable is only certain in the context of a block.

Transactions without contexts are just some signed data. Even with a spendability proof, that proof
is against a pre-existing block. Therefore, if there were some way to confirm a transaction after the
last block and before the next, we cannot tell if the transaction is valid or not.

Thus, whatever the involvement of other simplex-chains is, those chains cannot know for sure that a
foreign transaction is guaranteed to execute successfully. Requiring this would constitute foreign vali-
dation which would mean an O(c?) validation load, so we cannot have such a requirement. However,
there is a corollary here: expedited transactions do not depend on the validity of foreign blocks
and are thus not invalidated if a fraud proof is produced for the foreign block at some later point.

4.12.1 Protocol Design
This is enough to start sketching out expedited transactions.
1. R blocks must be able to include (specially flagged) L transactions.
2. L miners must now scan all relevant R blocks for expedited L transactions.

3. L miners must then include and execute those expedited transactions, and record whether
each was successful or not. Duplicates are dropped.

This is a rudimentary protocol and we will need to improve it before it can be used. For example:
what if an R miner includes a great many invalid L transactions? That would cause the L miner to
waste valuable block space, reducing overall revenue.

DoS and Griefing We will prevent any significant impact to miners with an architecture that
limits intentional DoS or griefing attacks.

The architectural change is simple:

104

e A block is inwvalid if it includes more than one'”” expedited transaction for any foreign chain.

Additionally, we can note that to support expedited transactions, a miner must scan foreign blocks.
We already do this for cross-chain transactions, and miners already have the blocks due to the
Axiom of Availability. There is no need for miners to include the raw transaction again if it has
already been recorded. Therefore, an L miner only needs to reference this transaction by hash

104We could set this limit higher, but let’s stick with one for now.

98 of 155

[git] = 43830880 = 2025-07-22

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

(similar to off-main transactions). This creates a new asymmetry which protects miners from
griefing attacks: the attacking miner must use more block space than the victim.

Incentives and Fees A different kind of griefing is financial and might even happen without any
malice: low-fee transactions. Miners normally have control over which transactions they include in
their blocks and from this we get a functional fee market. However, if an R miner can include an
expedited low-fee L transaction, and especially if this happens on many R chains at once, then L
miners are at the mercy of whatever transactions are chosen for them.

To resolve this, we will require:
o Expedited transactions must pay an equal fee to both miners.

Additionally, we should note that the fee is dependent on the successful execution of the transaction.
The foreign miner is therefore incentivized to consider only transactions with current spendability
proofs — the standard of proof is the most recent L block. (Since we are considering expedited
transactions particularly, we tolerate more stringent requirements than we’d require for simply
relaying transactions.)

Miscellaneous Since high-fee expedited transactions are likely, it’s natural to ask whether miners
of that chain can include them. There’s no reason to forbid this, and it further increases that
miner’s rewards, so we will allow it.

If a chain is really popular, then it’s conceivable that almost all of the transactions are expedited.
If it’s possible for a maximum block size to be exceeded with too many expedited transactions then
we’d have a deadlock on that chain. Therefore, when blocks are over the block size limit we need a
special rule to allow such blocks.

To mitigate these issues, we will modify the protocol:
¢ Blocks can include any number of expedited transactions as on-main for the local chain.

o Blocks are only invalidated by the block size limit if they include on-main transactions other
than the coinbase.

Synchronization Caveats We should note that synchronization of a single chain must change a
little to work with expedited transactions. Particularly, along with the block itself, we will need
some auxiliary data (the expedited transactions that were recorded in other chains). In terms of
complexity, this will not be a problematic increase: we have at most N; expedited transactions per
block, and O(N7) = O(c). Practically, this can mean synchronizing L chain nodes must download
up to ~5x as much for periods of high transaction volume (we’ll derive this shortly). On the
flip side, expedited transactions can be pruned from the R chain that they were included in, the
verifying R node only needs to know enough to recalculate the block root correctly.

The L Miner’s Perspective A good feature increases the value of the network and it is in the
rational self-interest of network participants to adopt it. Therefore, we can judge this feature from
a miner’s perspective to make sure it is preferable.

Miner’s are concerned about making and re-making blocks. They want to be able to create them
regularly and keep them up to date with minimal computational effort. Since we require (for fraud
proofs) that the output state from each transaction is recorded in the block, any insertion of a
transaction means re-executing transactions after the point of insertion to calculate new state
roots. For simple transactions this is not too bad, but more complex transactions might have
non-negligible overhead.

In general, we’d like the frequency of changes to be lowest for the first transactions and increase as
we go. Ideally the way state is calculated should account for this so that miners don’t unnecessarily
have to recalculate state.

99 of 155

[git] = 43830880 = 2025-07-22

Aside

4.12 Expedited Transactions

In terms of the transactions themselves, the cost of including an expedited transaction is two hashes:
the transaction ID and the resulting state root. Since transactions are typically 250 bytes or more,
we can estimate a 5x reduction in block size used for a similar transaction fee. Although new
expedited transactions can arrive with any foreign block (which happens frequently), not every
foreign block will have one, and they won’t change order (or at least not often) when subsequent
new ones arrive. That sounds good provided that the overhead is manageable.

Additionally, having the option to include expedited transactions for foreign chains is welcome.
They’ll have a decent fee and don’t require recalculating any state. That said, a miner might miss
out on some fees if they include an expedited transaction that some other miner already included
in a simultaneous block. Choosing semi-randomly might help avoid collisions, but in the meantime
the severity of this and efficacy of mitigation remains to be seen.

Overall, this is win—win provided that expedited transactions are not too complex, the overhead
of recalculating state is not too high, and an intelligent strategy can be found for which foreign
expedited transactions to include.

4.12.2 Security of Confirmations

Expedited transactions now have multiple stages of confirmation: first on the foreign chain, then
on the local chain when they are actually executed. The first stage guarantees that the transaction
will be executed, but not that it will succeed. Even a spendability proof against the prior L block is
not sufficient since expedited transactions consume inputs, and we don’t know which transactions
will be processed before the expedited transaction is executed.

This kind of confirmation is not unprecedented; off-main transactions are in a similar
superposition-like state before they are executed in an on-main block.

Thus, we are left with the question: Are these first-stage confirmations equivalent to second-stage
confirmations? One test is against double-spends: if they are easier to double-spend, then they are
not equivalent.

Double-Spend Resistance If the attacker controls the inputs, then an attack depends on their
ability to execute a conflicting transaction before the one in question. Therefore, if expedited
transactions are simultaneous or after on-main transactions they would be vulnerable. However, if
expedited transactions are before on-main transactions, then the inputs would have to be spent
another way. Off-main transactions are executed before on-main ones, but off-main parents are
always near-simultaneous with their siblings (due to the Axiom of Unified Ancestry) — we can
therefore trivially calculate any conflicts.'"® Cross-chain transactions for a block are determined
well in advance due to the delays built into the protocol, so any conflict here will be detectable and
we can predict the outcome.'%% Other expedited transactions might conflict too, but we already
know which those are (or will in short order), so again we can predict the outcome. There is one
other candidate that we haven’t thought about at all so far: some kind of automated transaction
that is executed at the start of a block. However, since this would be entirely determined by
the prior block, any outputs removed at this stage are already well known. These are all of the
cases for transactions that may execute prior to the expedited transaction, and none allow for an
advantage to the attacker provided we are watching for it. Therefore, expedited transactions are

not vulnerable to double-spends, provided that they are executed before on-main transactions.

105An attacker might create a conflicting off-main block after the expedited transaction is first confirmed. This
could spend the expedited transaction’s inputs; to mitigate this vector, we require that expedited transactions are
executed before any off-main transactions.

106 Cross-chain transactions are technically outputs rather than transactions, so they never fail or conflict. However,
it would be useful to send cross-chain transactions that can try to spend some inputs to new outputs. To ensure that
such an output always executes successfully, such an output must include another output that is used if any of the
inputs are not present or are invalid. The behavior of this output type, in english, is: try to spend the given inputs
using these signatures; if this succeeds, insert the first set of outputs; otherwise, insert the second set of outputs.
Care should be taken to ensure conservation of tokens depending on the branch taken.

100 of 155

[git] = 43830880 = 2025-07-22

Aside

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

As sometimes happens when design work and development are simultaneous, some of the
planning document may be written with the hindsight of solutions already implemented. The
idea of automatic system transactions is an example — this has already been implemented in
the Amaroo client. That’s why I know they are deterministic and depend only on the parent
block. The reason that they are at the start of a block is that they might contain heavy
state operations that are inconvenient to do at the end. Having them at the start gives the
same result as if they were at the end of the prior block, but, this way, the associated state
calculations only ever have to be done once.

When Confirmations Differ The primary difference between the first and second stage of
confirmation is that the first stage is not guaranteed to succeed.

Therefore, if we are to be absolutely certain that a transaction will succeed, then we should
discriminate. Particularly, we need to wait for a local confirmation to actually process the block at
minimum. At that point, however, we can in hindsight treat the confirmations as equivalent since
they are double-spend resistant.

If the transaction is less significant (e.g., paying for groceries) then we don’t need to worry too
much. Such transactions are more confirmed than zero-confirmation transactions, and less than it
will be after the next block.

Light-clients are a special case: if a local node is not available to validate blocks, then it is possible
that we have an invalid block somewhere and we don’t yet know about the fraud proof. In these
cases, we need to wait as long as the cross-chain protocol waits to ensure that no fraud proof exists —
about 60 seconds in practice. After this, the confirmations of both stages can be treated as normal.

4.12.2.1 Transaction Execution Order
For clarity, here is the execution order of transactions in a block:
1. Automated System Transactions (deterministic with on-main parent)
2. Cross-chain Transactions
3. Expedited Transactions
4. Off-main Transactions
5

. On-main Transactions

4.12.3 C’ and Time to First Confirmation
We can now calculate the time to first confirmation (TTFC) for expedited transactions.

The TTFC is the time it takes for an expedited transaction (with an appropriate fee) to be broadcast
and confirmed on any foreign chain (of which there are Ny).

1
N, By
O(TTFC) = O(c)+ O(c™) = 0(c™h)

TTFC = ¢ +

For a 150-simplex with 15 second block periods, TTFC = 100 ms. This is on the order of ¢ and
about as close to ‘instant’ as we can get.

We can now see that C’ is accurate from the moment an expedited transaction is broadcast. For
normal on-main transactions, C’ is accurate after the first confirmation.

Additionally, for expedited transactions:

x
N, B

TimeToXConfirmations(z) = ¢ +

101 of 155

[git] = 43830880 = 2025-07-22

Aside

4.12 Expedited Transactions

4.12.4 Effect on Chain-Capacity

There is a significant effect of expedited transactions that must be explored: the effective capacity
of a chain is increased with demand, and the overall network capacity is slightly decreased.

Let us consider an exceptionally popular chain, L, with a growing demand for transactions.

To start with, the chain is at 100% utilization and fees are roughly equivalent to any other chain.
As fee pressure increases, the first breakpoint for expedited transactions will be hit: the fee is
more than 2x the lowest fee of any other chain. At this point, it is profitable for that R miner to
include the expedited transaction over local transactions. Additionally, transactions with this fee or
higher should be counted as taking up about 1/5 of the local block space that they normally would.
With regards to capacity and utilization, we have traded one local transaction for five expedited
transactions.

The next major breakpoint to consider is when the average fee passes 2x the average lowest fee
over all other chains. When this happens, the miners of half of all simplex-chains can increase
their total fee intake by including expedited L transactions. On the (perhaps arbitrary) assumption
that 50% of all L block space is used by expedited transactions, we have traded 50% of our naive
capacity (for normal on-main transactions) for an equivalent 250% of our naive capacity in the
form of expedited transactions. The effective capacity is therefore 300% of the naive capacity.

As the fee pressure increases further, other chains will become saturated with expedited transactions
and there might be no space left for normal on-main transactions. This will barely register for
other chains since only one expedited L transaction can be included in any R block. Let’s also
assume there are no duplicate expedited transactions. Since, under these conditions, we expect
~ N expedited transactions per L block, we can use Equation 48 to say:

k1

ExpTxsPerBlock,,,, = N1 = 2B, By

(41)

For our typical lower-end parameters (k1 = 3000, By = 1/15, By, = 112): ExpTxsPerBlock,,,, ~ 200.
By comparison, a block would typically contain about k1 (2B - TxXayg) ! & 90 transactions. Under
these parameters, we can’t even use all of the available block space! The 200 expedited transactions
consume the space of ~40 normal transactions, so overall we could expect around 250 transactions
per block at most (80% of which would be expedited).

This is a little bit of a surprise (that the maximum increase is so low), but if we look to Equation 41
we can observe a symmetry with the formula for naive capacity:

k1

NormTxsPerBlockax = m

In effect, we are capped based on the ratio of Tx,,s to B. One consequence is that, at least in
some cases, we can probably relax the one-per-chain requirement.

Alternate case: UTi,gor What if By were much smaller, though? If we effectively have
By, < g (the size of a hash), then we have:

ExpTxsPerBlock,,,, >]];1 ~ 700

2Byg

Ahh, that’s more like it.

This will use the equivalent block space of approximately 140 normal transactions — more than
we could otherwise handle. This will increase the block size beyond its normal limit, but not by
that much. In this case, 140/90 & 1.56, and since this is only considering the transaction-half of the
block, the complete block is only ~1.28x larger than normal.

102 of 155

[git] = 43830880 = 2025-07-22

Aside

4 PRACTICAL CONSIDERATIONS FOR UT’S DESIGN

Even in the most extreme case, this is clearly still within O(c) block-size limits. That said, a
synchronizing node will need to download around (700+140+90)/(90x2) &z 5x more data to synchronize
the chain over such periods. If we are in a situation more like this than the previous one, we should
keep the one-per-chain requirement.

In practice, these formulas are a rough estimate and should be taken as such. The main use
of this analysis is to set ballpark expectations and plan accordingly. Real-world figures will
be heavily dependent on a variety of implementation details.

The take-away from all this is that expedited transactions provide a capacity buffer for a chain
when demand is high, and have the effect of distributing fee expenditure and transaction load over
the simplex.

103 of 155

[git] = 43830880 = 2025-07-22

4.13

Initial Configuration

4.13 Initial Configuration

The current plan for the initial configuration of UT and the Amaroo network:

Block Size: k; € [3000,6000] B/s. An exact value will be chosen closer to genesis.
Block Frequencies: By = 1/15 Hz for all simplex-chains.

Block Rewards: B, = BaseREwarD/n, coins. That is: according to the issuance schedule
(which determines BASEREWARD), each block (from any simplex-chain) provides a proportional
share of the base reward.

Convertible Context: Single Root Token (SRT; Section 2.4.1).

Difficulty Adjustment: DAA-2 as in An Economic Analysis of Difficulty Adjustment Al-
gorithms in Proof-of-Work Blockchain Systems (Noda, Okumura, Hashimoto; 2020), modified
to work for block-DAGs. The exact window size (DAAy) is TBD but DAAy = 100 (~25
minutes) satisfies our requirements. Section 4.10.4 has important contributions.

PoW Algorithms: TBD, but the goals are for diversity in the design of mining rig hardware,
avoiding imbalance due to the current distributions of mining hardware, attracting existing
under-utilized hardware, and providing multiple different paths for technology development.
Additionally, PoW algorithms will be used by multiple simplex-chains (miner resonance would
not happen, otherwise). One of the PoW algorithms will be deliberately compatible with
Bitcoin’s double-SHA256 and Bitcoin ASICs.

UT; Consensus Primitives: PoW + PoR; multiple hashing algorithms.

UT Variant: Conservative version of +HOT. Capacity is somewhere between +HO and
+HOT; the current truncation method is lossless.

UT; Transaction Capabilities: UTXOs by default; secondary EUTXO and EVM/WASM
subsystems. Special systems will allow for interoperability between subsystems.

Simplex-Chains: Mostly homogenous in architecture, though each simplex-chain can differ
in these ways: the PoW algorithm, which external (non-Amaroo) chains are imaged, and the
specific integrations with those external chains.

Intra-Simplex Cross-Chain Security: A\ = 4, which corresponds to ~60 seconds.

UT; and Dapp-Chains: Limited support initially with a focus on PoA dapp-chains; secure
and universal dapp-chains will require further development. Constrained by and dependent
on further developments of suitable PoS + PoR consensus methods.

Simplex Size: For reasons discussed in Section 6, the initial limit on the number of simplex-
chains will be 50% of maximal N;. This corresponds to ~75% of maximal TPS capacity.
The simplex will start with fewer chains at genesis, with more added later. Genesis estimate:
between 15 and 30 simplex-chains (X TPS € [150, 700]).

104 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8
https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8

Quote

Term

5 SCALING COMPLEXITY ANALYSIS OF ULTRA TERMINUM

5 Scaling Complexity Analysis of Ultra Terminum

UT has two primary methods of scaling: horizontally via mutual PoR, (simplex-chains), and
vertically via one-way PoR (dapp-chains). Horizontal scaling via PoR is novel. Dapp-chains are
similar to many of the sharding and pseudo-sharding ideas proposed for other networks (Polkadot,
Eth2, etc), though there are fewer restrictions on dapp-chains in UT compared to other designs.
Additionally, dapp-chains in UT are secured by the entire simplex. In the case of PoS dapp-chains,
this provides additional security compared to ‘naked’ PoS chains. Hosting dapp-chains on many
simplex-chains also provides greater system-wide maximum capacity than a network built upon a
single base-chain.

A common method of sharding is to nest blockchains. For example, Ethereum 2 has The Beacon
Chain — its root-chain (the single base-chain of a network).

The Beacon Chain will conduct or coordinate the expanded network of shards and stakers.
But it won’t be like the Ethereum mainnet of today. It can’t handle accounts or smart
contracts.

— The Beacon Chain | ethereum.org (2021)

This type of configuration, where a base-chain facilitates child-chains, is referred to as nesting in
this section and in the context of UT’s architecture and complexity. Base-chains are at the first
level of nesting. The shards of Ethereum 2 are a level of nesting above the Beacon Chain, i.e.,
nesting level 2. UT’s dapp-chains are also at nesting level 2.

[Base-chain: A chain that has no parent-chains; i.e., is at the base nesting level.

Sometimes (but not always) people use terms like layer 2 to describe this sort of nesting, though
such usage of layer 2 is ambiguous and potentially misleading. It easily confuses nesting with
off-chain scaling methods (such as payment channels, rollups, or ephemeral ‘child’ blockchains, e.g.,
Plasma), and it potentially misleads readers about the security properties of nested blockchains.
Nested blockchains can faithfully inherit the security properties of their parent-chains, which is not
the case for layer 2 solutions prior to finalization.

Furthermore, terms like layer x cannot accurately describe UT’s design. Consider a PoS dapp-chain
on UT. Would that dapp-chain be layer 1 or layer 27 It would be misleading to call it layer 2
whilst directly comparable chains (like Ethereum 2, Polkadot, or Cardano) are called layer 1. Such
PoS UT dapp-chains have all the security qualities of an equivalent stand-alone PoS chains, and
more. If they were called layer 1 chains, then what is the simplex — layer 07 It is clear that the
common idea behind layer 1/2 scaling does not have sufficient capacity to accurately describe UT’s
simplex- and dapp-chains; it is inadequate.

5.1 Analysis Methodology

The following derivations focus on throughput of particular blockchain designs and scaling configu-
rations. These derivations will let us evaluate the complexity of each design.

Raw throughput of a network, T}, is measured in bytes/sec (B/s) for some level of nesting, i. T;
directly corresponds to a design’s maximum transactions per second (TPS;), where Tx,yg is the
average size of a transaction, via:

TPS; = Ti/Txave

The raw B/s throughput of a chain at the " level of nesting is denoted by k;. Note that T; is
a calculated value, but k; is a parameter that may be chosen. An increase to k; is effectively an
increase in maximum block size.

105 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20210225022359/https://ethereum.org/en/eth2/beacon-chain/

Term

5.2 Complexity of O(c) Chains

We will also derive relationships between the maximum number of chains at a level of nesting, IV,
and the maximum network throughput at that level of nesting, T;. For most existing blockchain
designs, N1 = 1.

With regards to simplexes, we are particularly concerned with the complexity of a mazimal simplex
— i.e., the simplex with the highest TPS possible.

Maximal Simplex: A simplex with the maximum TPS under given O(c) constraints.

Additionally, O(k;) is defined as O(k;) = O(c). This is reasonable provided there are no O(c)
bottlenecks, e.g., network bandwidth, CPU throughput, memory requirements, etc (Section 1.1.2).

5.2 Complexity of O(c¢) Chains

Example: Bitcoin.

The raw throughput, k1, can be calculated for existing chains (e.g., Bitcoin) via the product of the
maximum block size, Bpax (in bytes), and the block production frequency, By (in hertz, or s7!):

k1 = Bax - Bf

The throughput, Ty, of an O(c) chain is equivalent to its raw throughput:

The complexity order of the network is given by O(T1) = O(k1) = O(c) as expected.

Care should be taken to account for protocol extensions like Segregated Witness that effectively
reduce the size of transactions (in SegWit’s case, by ~1/4).

For Bitcoin — given k; ~ 1700 B/s, and transaction size TXays = 500 - 3/4 B — the maximum TPS
is given by:

1700

TPSBitcoin ~ ~ 4.5

Txavg

This is what we expect based on the measured real-world performance of Bitcoin.

5.3 Optimistic Complexity of O(c?) Chains
Examples: Ethereum 2, Polkadot.

Suppose the root-chain has a throughput of k1 B/s and it can support up to Ny nested chains.
Those nested chains have headers of Dy, bytes that are produced at a frequency of Dy (s71). If all
headers of nested chains are recorded in the host chain, then each nested chain consumes at least
Dy - Dy, B/s of the root-chain’s capacity.

Thus, Ns is given by:

k1
Noy= —1+ 42
" DDy (42)
NB: For blockchains of this design: N = 1.
If each nested chain has a throughput capacity of ka B/s, then:
T, — ki - ke
Dy - Dy,
k2 (43)
Dy Dy
Thus O(Ty) = O(c?) as expected.
106 of 155

[git] = 43830880 = 2025-07-22

Aside

5 SCALING COMPLEXITY ANALYSIS OF ULTRA TERMINUM

5.3.1 Effective Header Size

It’s typical, though, that the headers of nested chains, alone, are not sufficient: additional data is
required. When such data is required to be recorded on-chain (i.e., it cannot be deterministically
regenerated), then the effective header size is the size of the raw header, plus the size of any auxiliary
data.

Note that, for the calculations in this paper, ‘Ethereum 2’ means the sharded beacon chain
design as written in 2021, not the rollup-centric danksharding approach being pursued as of
January 2025.

For example, in an Ethereum 2 beacon block, each shard has a header size of 280 B, but there
is additional overhead. A reasonable lower-bound is that each header has an effective minimum
header size of 312 B.'"7

In the case of Polkadot, it is measurable'’® that a typical minimum of 819 B is used in the
paralnclusion.candidateBacked extrinsic (i.e., the transaction type that records parachain
headers). So, a lower-bound on the effective header size of a parachain is 819 B (this does not
include bitfields'"”).

In those situations, with regards to these capacity derivations, one can use the effective header size
as a replacement for the raw header size.

5.4 Complexity of UT,

There is no single root-chain for a collection of mutually reflecting blockchains (i.e., a simplex), so
N; # 1. What is Ny then? In a simplex, each chain has k1 B/s capacity, but this is split between
reflections and transactions. At this foundational level (where there is no nesting yet), headers are
By, bytes with a frequency of By Hz. There are N; simplex-chains.

For the purpose of Section 5 we will generally not consider the impact of explicitly including PoRs
along with block headers (i.e., the +PoRs UT variants). The methods we use here are easily
generalized to account for those variants, and associated analysis can be found in Section B.1.
Unless otherwise stated, Section 5 analyzes the UT op variant.

Reflecting a single simplex-chain requires By - By, B/s of capacity, and each simplex-chain must
reflect N; —1 ~ N; other simplex-chains. This means that a simplex-chain must reserve Ny - By - By,
B/s of its capacity for reflections, denoted by k1,5 = Ny - By - By,. Additionally, simplex-chains
must reserve some capacity for transactions, ki sz.

Since simplex-chains must split their capacity between reflections and transactions, set:

ki =Fkitww+FkiB

44
kite = k1 — k1B “

Given kl,B = N1 . Bf . Bh:
kite = k1 — N1 - By - By, (45)

107 A of late September 2021, the Ethereum 2 sharding spec has capacity for 2:1 attestations to shards per block
(with 64 shards), but only 32 B of each attestation is dedicated to sharding. The spec also has capacity for 4:1
shard headers to shards per block. It seems reasonable that capacity which exists will be used within reason. Thus
a reasonable lower-bound for the effective header-size of shards is taken via: 1x headers per shard per block, 1x
attestations per shard per block (which do not count towards effective header-size), and 1x 32 B per attestation per
block. Shards have headers of 280 B, so the minimum effective header size is taken to be 312 B. (note: a required
dependency of the referenced sharding spec is the October 2021 merge spec and October 2021 phase0 spec.)

108Whilst some parachain headers exist that are smaller than 819 B, it’s not really significant for this analysis
(a reduction of 10% wouldn’t change much). We’re already ignoring bitfields, and 819 B seems optimistic if we’re
interested in the average parachain header size, since many are larger. All-in-all, I guess that 819 B is a bit generous,
and (ideally) all claims about existing chains in this paper err on the side of generosity.

109Bitfields is a Polkadot term — it’s a list of hundreds of signatures, totalling > 14 kB per block on the current
Kusama testnet (October 3" 2021).

107 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20250105115555/https://ethereum.org/en/roadmap/danksharding/
https://github.com/AmarooHQ/polkadot-effective-dh/blob/5cd0f0d21ff1cd3c57d1c2af70aaf6d8ee19dc11/main.js
https://github.com/ethereum/consensus-specs/blob/296f9bab81566e2a11dd0ce3de806ff191e926bb/specs/sharding/beacon-chain.md#beaconblockbody
https://github.com/ethereum/consensus-specs/blob/296f9bab81566e2a11dd0ce3de806ff191e926bb/specs/merge/beacon-chain.md#beaconblockbody
https://github.com/ethereum/consensus-specs/blob/296f9bab81566e2a11dd0ce3de806ff191e926bb/specs/phase0/beacon-chain.md

5.5 Dapp-Chains and the Complexity of UTs and UTj

Since each simplex-chain reserves ki 4, B/s for transactions, the total throughput reserved for
transactions will be Ny - kq ¢,,. Thus:

Ty = Ny K1tz (46)
= Ny(ky — Ny - By - By)
=N, ki —N,*-B;- By, (47)

The optimal number of simplex-chains will maximize throughput. We can find that maxima via:

arT,
~Ll _k —-2-N,-B; B
AN, 1 1 by Dy

dT"
At o =
ki =2-N,-Bj- B

Ny k (48)
SN = oTeT e B; - B

Thus O(N;) = O(k1) = O(c).

From Equation 47 and substituting N7 from Equation 48:

Tl:kl.L,Bf.Bh.L
2~Bf~Bh) 4'Bf2'Bh2
_ 2k12 _ k12 (49)
4-By-B, 4-By-Bp
kei®
" 1-B; B,

Thus O(T}) = O(k1?) = O(c?).

What are ki g and ky 4, in terms of k17 From Equation 46 and Equation 49:

Ny kg =
1 l,tw—4.Bf.Bh
Substituting N7 from Equation 48 gives:
kikie ki
2-By-B, 4-By-B,
k
kl,tz = 31

Thus, from the definition of k7 in Equation 44, we find that maximal throughput requires half of
the block to be used for reflections:

ki, = 5

5.5 Dapp-Chains and the Complexity of UTy; and UT;
5.5.1 Dapp-Chains

If a system supports nested chains, then we can say that for some throughput, 73, at nesting level i,
the (i + 1) nesting level can support N;,; nested chains via:

T;

Nij1 =
i+1 Df) Dh

(50)

108 of 155

[git] = 43830880 = 2025-07-22

5 SCALING COMPLEXITY ANALYSIS OF ULTRA TERMINUM

Therefore, via the same logic used for Equation 43:

ki1
Ti1=1T;- 51
e ay

Note that this relationship only holds for the traditional sharding model of securing sharded chains
via their inclusion in a parent-chain, e.g., UT’s dapp-chains (UT3) and dapp-dapp-chains (UT}3), or
existing O(c?) designs.

Combining these yields:

T;
Niy1 = 2 - (52)
i+1
5.5.2 UT with Dapp-Chains (UT5)
Starting with Equation 49 and building on Equation 51:
2
T = kT
4-By- By
e (53)
o Ty L 2

T 4.B; B, -D;-Dy

Thus O(Ty) = O(c?).
The maximum number of dapp-chains is given by:

T
Ny = —
2= %
— k12
~ 1. B; By, D; Dy

When Dy, = By, and Dy = By, note that Ny = N;°.

5.5.3 UT with Dapp-Dapp-Chains (UT3)

If we say each dapp-chain hosts shards or more dapp-chains (e.g., as a dapp-chain version of Eth2
or Polkadot would), then via Equation 51 and Equation 53,

T
~D; D,
_ ki ko ky
" 4-By-By-Ds*- Dy’

T3 k3

(54)

Thus O(T3) = O(c?).

Note that the derivation of T3 presumes that the parameters Dy and D), are the same for both
dapp-chains and dapp-dapp-chains.

Via Equation 52 and Equation 54:

109 of 155

[git] = 43830880 = 2025-07-22

5.6 Complexity of Cross-Chain SPV Proofs & Proofs of Reflection

5.6 Complexity of Cross-Chain SPV Proofs & Proofs of Reflection
5.6.1 Cross-Chain SPV Proofs

Each chain — at full capacity — operates with order O(c) by definition. Thus its state has order
O(c) also. The size of SPV proofs scale logarithmically with the set you’re proving membership of,
e.g., the number of transactions, or size of the chain’s state, etc. Thus, SPV proofs scale with order
O(logs ¢).

For a given O(c?); j € {2,3,4} configuration of UT (i.e., UTy, UTy, UT3), a chain can process SPV
proofs of state on another chain. For j = 4, the furthest that a transaction can occur from its
host simplex-chain is in the 3rd level of nesting (i.e., a dapp-dapp-chain). It would require j — 1
SPV proofs to “ascend” from the host simplex-chain to a dapp-dapp-chain. However, given that
full nodes of a dapp-dapp-chain are required to be full nodes of both the host dapp-chain and the
host simplex-chain, transactions in that dapp-dapp-chain do not need to provide SPV proofs of
state in either of those host chains — full nodes already have those details. That is: transactions
which “descend” the levels of nesting can do so with O(1) cost. SPV proofs are only required when
transactions “ascend” the levels of nesting to other simplex-, dapp-, or dapp-dapp-chains.

Thus, the maximum number of SPV proofs required to prove state anywhere in a UT simplex is j.

Since j is constant, cross-chain SPV proofs therefore have order:

O(j - logy ¢) = O(log; c) (55)

5.6.2 Proofs of Reflection

A simplex-chain reflects N1 — 1 &~ Nj other simplex-chains. A merkle tree of reflected headers has
order O(Ny1) = O(k1) = O(c) and a corresponding proof size of order O(logy N1) = O(log, k1) =
O(log, ¢). Since those other simplex-chains also have ~Nj reflections, proving reflection in those
other ~N; simplex-chains requires ~/N; merkle branches. Thus, the full set of reflection proofs, per
simplex-chain, is O(Ny -logy N1) = O(c - log, ¢).

Note: In a production system, these proofs can be excluded from blocks by treating them as
droppable witnesses; see Section 4.2.

5.7 TPS Complexity Comparison

k: raw per-chain throughput (bytes/s)

By: simplex block frequency (s~ 1)

By,: simplex block header size (bytes)

Dy = By: dapp-chain block frequency (s™1)
Dy, = By: dapp-chain block header size (bytes)

NB: For the purposes of Table 6 and on, the average transaction size is taken to be 250 bytes.

Table 6: A comparison of the maximum theoretical transaction throughput (transactions per
second; TPS) with parameters k, By, By, for O(c), Sharded O(c?) and the different UT ;op scaling
configurations. Note that the Sharded O(c?) column is the theoretical optimal limit for sharded
systems where all headers are recorded in the base-chain.

k, By, B, O(c) Sharded O(c?) UTi op TPS UTo,op TPS UTs,op TPS
3000,1/15,112 12 4,821 1,205 484,295 1.95 x 108
3000, 1/15, 84 12 6,428 1,607 860,969 4.61 x 108
3000,1/30,112 12 9,642 2,410 1,937,181 1.56 x 109
3000, 1/30, 84 12 12,857 3.214 3,443 877 3.69 x 10°
3000, /60,112 12 19,285 4,821 7748724 1.25 x 1010
3000, /60, 84 12 95,714 6,428 13,775,510 2.95 x 1010
110 of 155

[git] = 43830880 = 2025-07-22

Aside

5 SCALING COMPLEXITY ANALYSIS OF ULTRA TERMINUM

More detailed comparison tables can be found in Appendix B.

5.8 Bandwidth Complexity
5.8.1 Full Node

What data must a full node download? A full node must be able to completely validate a single
chain. For a simplex-chain, provided that the PoRs and corresponding headers remain available
(which they always do''"), this means it must download: all blocks for that simplex-chain, and any
auxiliary data necessary to verify PoRs. Note that bandwidth requirements differ based on which
UT protocol variant is used.

For UT, op, the data a full node requires are: each block, the headers of all reflecting chains, and
the missing branches for all PoRs. Network-wide, headers consume N; - By - By, B/s. For a single
chain, PoRs use N - By - g - [log, N1] B/s of capacity, where g is the digest size of the hash used
for merkle trees (usually 32 bytes). Let’s denote the total bandwidth required for a full node As.
In the worst case (UT g0 and UT gor), where both headers and PoRs must be downloaded:

AS=k1+(N1 - By -Bh)+(N1 -By-g- |—10g2N1-|)
=k +MN; ~Bf~(Bh—|-g- |—10g2N1—‘)

Thus, with omitted proofs, O(As) = O(k1 + Ny -logy N1) = O(c - log, ¢).
However, with explicit PoRs (variants including +PoRs), As < ky + Ny - By - B, = O(k1) = O(c).

The term g-[log, N1] in these equations is the size of a merkle branch for a PoR. What if verkle
trees are used instead? With a branching factor of 256, 32 byte commitments and proofs,
and 1 byte location specifiers, this term should be replaced with (1 4 32) - max(1,loggss N1).
The complexity of these two terms is the same — O(logc) — but in practice verkle PoRs
are less than half the size of merkle PoRs. For this reason, the numerical calculations used
in the tables throughout this paper assume that the UT implementation uses verkle trees.

5.8.2 PoR Graph

We found the bandwidth requirements for fully reconstructing the PoR graph before in Section 4.6.1
involving the measure of propagation delay, ¢ seconds. Let’s call the total bandwidth requirements
for the PoR graph Ar and substitute in Equation 48.

Ar = N1B(By, + g(1+ N, Bs o))
L (Bh +g(1+ @))

~ 9B, 2B,
k1 g . gkio
= — 1 _—
= +Bh+23h2) (56)

= O(Ar) = 0(c*¢)

As discussed in Section 4.6.1 it is unclear whether O(c?*¢) = O(c). However, we don’t need to know
O(Ar) to estimate some real world values of Ar. Practically, Ar looks to be between k; and 3k;
for k1 = 3000 — but, this is sensitive to ¢.

If we try to restrict Ar < ki, then we find that we require a large By, or small k;:

ky g gk1¢
k —(1+ =
1> 2(+Bh+2Bh2)

2B;” > 2Byg + gk1¢

110The necessary PoRs are, at the very least, part of other simplex-chains, so “always do” assumes that simplex-
chains themselves remain available, excluding planned shutdown. Since all blockchain networks depend on the
availability of their chains, this is a safe assumption.

111 of 155

[git] = 43830880 = 2025-07-22

Aside

5.8 Bandwidth Complexity

k1 < 2By (B, — g)(g6) "

If k& = 3000, ¢ = 1, we have By, > 235 — much larger than what we’ve assumed to be the minimum
so far. Achieving Ar < 3000 requires ¢ < 0.2 given the usual parameters.

Regarding the terms from Equation 56 within the parentheses, it is clear that 1 + g/Bj, will be a
value around 1.3, give or take. What do we expect the value of gki¢/(2B5?) to be? If By, € [50,500],
and ¢ € [0.05,2.0], then we can see that the coefficient of k; is, at most, 0.0128 (and 3.2 - 1077 at
least). Thus, this last term dominates (1 + g/Byp,) when gkié > 2B,%. To keep Ar practicable, we
should therefore go to some effort to keep gki¢p < 28,22 (where z is a constant near 1 that we can
use to add some acceptable tolerance in lieu of improving ¢).

Axiom of Unified Ancestry Optimization Using the Axiom of Unified Ancestry, we do not
need to reference a block’s parents directly, since they are implied by the PoR graph and the
absence of fraud proofs. This results in a small optimization where the parent hash is replaced
with the best tip of the longest PoR chain. Regarding Ar, g(1 + NyBy¢) — gN1By¢ and thus:

Ar = Nle(Bh + gNled))

-50+428)

A maximal simplex of reasonable parameters has Ar ~ 7,200 B/s. Restricting Ar < k; now implies
k1 < 2Bi%(gp)~". If k1 = 3000, ¢ = 1, we have By, > 219.

5.8.3 Complete Simplex

This is also the bandwidth required by all active miners due to the Axiom of Availability.
Miners do not verify the state transitions of each block, but do verify the integrity of the
data structure and PoR graph (which is very cheap by comparison).

What about the bandwidth required to verify the entire simplex?

If miners temporarily keep the blocks of every simplex-chain (so that they can regenerate PoRs and
verify that reflected headers correspond to existent blocks) then what is the complexity and burden
of this?

The amount of network bandwidth, AS, required to download all blocks (as they are produced)
across all simplex-chains is the overall transaction throughput, (N7 - k1 4,), plus the data necessary
to reconstruct the PoR graph: Ar. Any auxiliary data can be deterministically regenerated.

AS = N1 . kl,ta; + Ar
= O(AS) = 0(c?) + O(*¢) = O(c?)

If this were more than just downloading all the blocks, then we’d do that instead:

AS < Ny - k _L
= Va1 1_4~Bf~Bh
— O(AS):O(cz)

It is clear that AS has order O(c?), but how bad is this? For k1 = 3000, By = /60, and By, = 112:
AS ~ 1.2 MB/s. With those figures: N7 = 800 simplex-chains, Ny = 645,000 dapp-chains, and
maximum tps of ~7.7 x 105 at nesting level 2. Decreasing block times to 15s correspondingly
decreases the bandwidth requirements to 0.3 MB/s for a simplex with ~200 chains, ~40,000
dapp-chains, and ~484, 000 max tps.

While O(c?) bandwidth scaling is not ideal, it’s clear that — especially in the early days of a UT
simplex when there are fewer simplex-chains — there are tolerable configurations available; i.e.,
there is excess capacity.

112 of 155

[git] = 43830880 = 2025-07-22

5 SCALING COMPLEXITY ANALYSIS OF ULTRA TERMINUM

Table 7: Chain-capacity and bandwidth requirements for UT op: Ny, No, N3, AS, Ar, and C’ for
various parameters.

k, B¢, B, Ny No N3 AS (B/s) Ar (B/s) C' (Hz)
3000, 1/15,112 200 40,357 16,215,243 306,137 4,798.5 134
3000, /15,84 267 71,747 38,436,133 408,959 7,173.5 17.9
3000, 1/30, 112 401 161,431 1.30 x 10® 607,477 4,798.5 13.4
3000, 1/30, 84 535 286,989 3.07 x 108 810,744 7,173.5 17.9
3000,1/60,112 803 645,727 1.04x 10° 1,210,155 4,798.5 13.4
3000, /60,84 1,071 1,147,959 2.46 x 10° 1,614,316 7,173.5 17.9

5.9 The Impact of Header Size

Equation 51 shows that UT’s throughput is inversely proportional to the size of headers, Dy, for
that given depth of nesting (this is true for UTy, too). It also shows that throughput is inversely
proportional to the block frequency, D¢, and proportional to chosen raw throughput, k.

Of these three values (header size, block frequency, and raw throughput), header size is the only
value we cannot choose arbitrarily. To maintain overall throughput, doubling the header size requires
one of: halving the block production frequency (i.e., doubling the block target time), doubling the
chain’s raw throughput, or some combination of those two options. One such combination would
be to decrease the block production frequency by a factor of 1/v2 and increase the raw throughput
by a factor of v/2.

Changing all header sizes by some factor has different effects for different UT configurations. For
UT}, the effect on throughput is linearly proportional to the factor; doubling the header sizes reduces
overall throughput by a factor of 2. However, for UT5, the effect is quadratically proportional to the
factor; doubling the header sizes will reduce overall throughput by a factor of 4! The relationship is
even worse for UTj3, where the effect is cubicly proportional.

It is worth noting, though, that different header schemes can be used in each level of nesting. This
means that if, say, dapp-chains need larger headers than simplex-chains, then there isn’t a negative
effect on the capacity of the simplex (i.e., the level(s) beneath).

This effect is not unique to UT, though. In general, any system of sharding is also affected in this
manner when the headers of a child-chain are included in the parent-chain’s blocks.

Practically, this effect means that a decrease to the size of headers has increasing marginal benefit.
Compared to O(c) blockchains (e.g., Bitcoin), efficient header schemes are far more important for
UT and sharded blockchain networks.

5.10 Comparison of UT Variants

Table 8 and Table 10 show a comparison between UT variants. For comparisons over a range of
parameters, see Appendix B.

113 of 155

[git] = 43830880 = 2025-07-22

5.10 Comparison of UT Variants

Table 8: Comparison of UT variants’ capacities with parameters: k£ = 3000 B/s; By = 1/15; By, = 84
bytes; 250 byte transactions. “E. Bj,” means the effective header-size. Simplex-headers for the
purposes of PoR can shrink to less than the actual header-size due to the data that is excluded
under the corresponding scaling configuration.

N, Y TPS; N, XTPS, C' (Hz) E.B, (B) PoR (B)
UTpors 192 1,153 51,510 618,130 12.8 117 33
UT pors 227 1,363 77,479 929,750 15.1 99 33
UT 4 HOPoRs 273 1,940 86,648 1,039,779 18.2 67 35
UT. noports 326 2,319 131,797 1,581,574 21.7 56 40
UT.op 267 1,607 71,747 860,969 17.9 84 35
UT opr 340 2,045 116,219 1,394,628 22.7 66 41
UT 1o 703 4,218 188,337 2,260,044 46.9 32 54
UT nor 1,406 8,437 479,403 5,752,840 93.8 16 60

Table 9: Comparison of UT variants’ capacities; as in Table 8 with & = 20000 B/s.

N, X TPS; N, XTPS, C (Hz) E.B, (B) PoR (B)
UT poRs 1,023 42,256 1,886,448 1.51 x 108 68.2 142 58
UT{ poRTs 1,168 48,009 2,727,810 2.18 x 108 77.9 125 59
UTinorors 1,535 64,614 2,884,575 2.31x 108 102.3 93 61
UTinoports 1,791 77,078 4,379.483 3.50 x 108 119.4 77 61
UT . op 1,785 71,428 3,188,775 2.55x 10 119.0 84 61
UT opT 2,272 90,909 5,165,280 4.13 x 108 1515 66 62
UT 10 4,687 187,500 8,370,535 6.70 x 108 3125 32 64
UT not 9,375 375,000 21,306,818 1.70 x 10° 625.0 16 65

Table 10: Comparison of UT variants’ network and storage requirements with parameters: & = 3000
B/s; By = 1/15; By, = 84 bytes; 250 byte transactions. DTSs,,,: The days to sync 5 years of a
simplex-chain’s history, including PoRs, with a fully utilized 10 MB/s network connection.

As (B/s) DTSsyrs Chain-GB/yr Ar (B/s) AS (B/s) X DTSsys

UT 4 poRs 3,000 0.55 94.7 4,106 292,567 53
UT{ poRTs 3,000 0.55 94.7 3,073 343,981 62
UT{ HOPoRs 4,528 0.83 142.9 7411 492,641 89
UT HOPoRTs 4,434 0.81 139.9 5560 585,471 106
UT.op 3,617 0.66 114.2 7173 408,959 74
UTopt 3,939 0.72 124.3 5995 517,359 94
UT 10 9,472 1.73 298.9 40,593 1,095,281 200
UT not 14,822 2.71 467.8 78,000 2,187,375 399

9

Table 11: Comparison of UT variants’ network and storage requirements; as in Table 10 with

k = 20000 B/s.

As (B/s) DTSsys Chain-GB/yr Ar (B/s) AS (B/s) X DTSsyrs
UT 4 poRs 20,000 3.65 631.2 82,331 10,646,442 1,944
UT ports 20,000 3.65 631.2 54,890 12,057,258 2,201
UT 4 HOPoRs 28,596 5.22 902.4 179,424 16,333,048 2,982
UT {HOPoRTs 27,880 5.09 879.8 123,841 19,393,568 3,541
UT op 27,307 4.99 861.7 240,566 18,097,709 3,305
UT opt 29,454 5.38 929.5 196,078 22,923,351 4,186
UT no 66,351 12.12 2,093.9 1,598,750 48,473,750 8,852
UTnor 102,016 18.63 3,219.4 3,176,250 96,926,250 17,701

114 of 155

[git] = 43830880 = 2025-07-22

Term

Term

6 UTy: TILING SIMPLEXES

6 UTy: Tiling Simplexes

In a normal simplex, all simplex-chains mutually reflect all other simplex-chains. This method
(UT,) is useful, but, without dapp-chains, it is limited to O(c?) scalability.

Can we do better than O(c?) scalability, though? Is O(n) scalability possible?

When analyzing simplexes in Section 5, we saw that each chain in a simplex reserves 1/2 of its
capacity for reflections (with other simplex-chains) and 1/2 of its capacity for transactions and
dapp-chain headers. We could, however, use some of this capacity for reflections for a slightly
different purpose. If we were to divide the capacity for reflections into multiple partitions, then
we would have a smaller simplex, but could also use this new excess capacity for something else.
Let’s consider a simplex where 3/4 of its capacity for reflections is reserved as excess capacity. Here,
internal reflections are the mutual reflections between all simplex-chains that are part of the same
simplex.

Simplex-chain Capacity

Interr}al Excess Reflection Capacity Transactions and Dapp-chain Headers
Reflections
~—
12.5% 37.5% 50%

What can we use that excess capacity for?

To answer this, we need to introduce a new type of simplex: a simplex tile. These are smaller
simplexes that, unlike mazimal simplezes, explicitly reserve some reflection capacity for the purpose
of mutually reflecting simplex-chains in other simplex-tiles. Reflections with simplex-chains in other
tiles are called external reflections.

Simplex-Tile: A simplex which partitions its capacity for mutual reflections such that
each simplex-chain mutually reflects all other simplex-chains in that tile, and all other
simplex-chains in neighboring (or adjacent) tiles.

We can now replace the Fzcess Reflection Capacity in our simplex-chain capacity diagram like this:

Simplex-chain Capacity

Internal External External External
Reflections | Reflections | Reflections | Reflections
N —

12.5% 12.5% 12.5% 12.5% 50%

Transactions and Dapp-chain Headers

Simplex-tiles will be the foundational unit from which we construct Simplex Tilings.

6.1 Simplex Tilings

We connect simplex-tiles together, via mutual reflection, to create a simplex tiling. For the sake of
brevity, when we say that a simplex-tile reflects another tile (or that a tile is connected to another
tile), we mean that all simplex-chains in the first tile mutually reflect all simplex-chains in the
second tile. A simplex tiling is thus a graph of interconnected tiles. Connected tiles are neighbors
and are adjacent to one another in the tiling.

[Simplex Tiling: An interconnected graph of mutually reflecting simplex-tiles.

Before we look at some complex (and useful) tilings, let’s consider three examples that are some of
the simplest tilings possible: Figure 33. The examples contain 2, 3, and 4 simplex-tiles respectively.

115 of 155

[git] = 43830880 = 2025-07-22

Aside

6.2 Tile Valence

Note: we are not yet concerned with the security properties of these examples — we need to
build up to that first.

N Al

'/\44
N\
Y
\&..
N

o

(a) 2 simplex-tiles (b) 3 simplex-tiles (c) 4 simplex-tiles
Figure 33: Trivial simplex tilings — these are all equivalent to a single simplex as each simplex-chain
reflects all other simplex-chains in the network.

In those examples, notice that each simplex-tile reflects each other tile. This means that each
simplex-chain is mutually reflecting all other simplex-chains (in all other tiles), so each of these
tilings is equivalent to a standalone simplex. These tilings aren’t particularly useful to us in practice,
though, because we don’t have a way to increase network-wide capacity beyond O(c?).

If we want O(n) capacity, then we’ll need to come up with a new pattern for how to connect tiles
together and how to add new tiles. Specifically: the pattern must always have room for more
simplex-tiles, and each tile added must, on average, add more than 1 new spot for additional
tiles.!!!

6.2 Tile Valence

The valence (v) of a tile is the number of other tiles that it can connect to. In our example earlier,
we split our simplex-tile’s capacity for reflections into 4 equal parts — each part was 12.5% of each
simplex-chain’s total capacity. Since 1 of those parts is reserved for internal reflections, and 3 parts
are reserved for external reflections, that simplex-tile has a valence of v = 3. If, instead, we split
our simplex-tile’s capacity for reflections into 5 equal parts, then each part would be 10% of each
simplex-chain’s total capacity, and the tile would have v = 4.

We don’t have to use a valence of 3 — we can split up a tile’s capacity for reflections any way
that we like. Each tile could even have different valences, too, but this makes designing a tiling
more complex. For the sake of simplicity, we will only consider tilings where each tile has the same
capacity and the same valence. When we say that a tiling (rather than a tile) has a valence of v,
we mean that each tile in the tiling has a valence of v.

If a tiling has a valence of v = 0, then all capacity for reflections is reserved for internal reflections
— so this is just a normal simplex.

If a tiling has a valence of v = 1, then the tiling is limited to 2 tiles at most — there is only
one solution. We end up with a tiling that’s equivalent to a normal simplex, though, since all
simplex-chains must reflect all other simplex-chains. The complete tiling with v = 1, which is the
only possible tiling, is shown in Figure 33a.

If a tiling has a valence of v = 2, then there is a countably infinite number of solutions. The trivial
solution (which has 3 tiles) is where each simplex-tile is connected to all other simplex-tiles — this

H1There are tilings where a tile consumes more than one free spot. For those tilings, on average each tile must add
more spots than it consumes.

116 of 155

[git] = 43830880 = 2025-07-22

6 UTy: TILING SIMPLEXES

is shown in Figure 33b. We can create a tiling of v = 2 with 4 tiles, too: A <+ B <+ C < D + A.
This is part of a class of solutions: a loop. With v = 2, we can construct a loop of arbitrary length.
The last solution is a long chain of tiles that never loops back around; see Figure 34. This is our
first unbounded solution — it’s a solution where we can always add more tiles. The problem with
this solution is that, although it may have O(n) capacity, the distance between tiles is also O(n).
This is not practical since O(n) SPV proofs would be needed to prove state on the far side of the
tiling. (The class of solutions that are loops is impractical for the same reason.)

Figure 34: The only unbounded tiling at v = 2. Although it is unbounded (we can always keep
adding tiles), the distance between those tiles is proportional to the size of the network — so this
isn’t scalable.

Things start to get interesting when v > 2.

If a tiling has a valence of v > 3, then there are many possible patterns of solutions. We will focus
on one particular class: the patterns of tiling that are also trees.

6.3 Tree-Tilings

The tree-tilings that we’ll consider are straight forward to construct. First, we start with a root tile.
Then, when we need more capacity, we create new tiles that are children of the root tile. Then,
when each of these child-tiles is nearing maximum utilization, new children are created as children
of that tile — they are grandchildren of the root tile. We can continue in this manner indefinitely.

How many children, at most, should we create under each tile? The root tile has capacity for v
children, and each other tile has capacity for v — 1 children and 1 parent. We could allow the root
tile to have up to v children — and it is possible to create a tree-tiling like this — however, we're
not going to do that here. Instead, we’ll limit the root tile to v — 1 children to match all other
tiles.''? This means that the tilings we’ll consider will be n-ary trees — if v = 3 then the tiling
is a binary tree; if v = 4 then it’s a ternary tree; if v = 5 then it’s a quaternary tree, etc. Binary
tree-tilings of depths 1, 2, and 3 are shown in Figure 35. Note that, although Figure 35 constructs
the tiling as a balanced tree, there’s no requirement that a tree-tiling needs to be balanced.

(a) 1st iteration. 3 tiles. (b) 2nd iteration. 7 tiles. (c) 3rd iteration. 15 tiles.

Figure 35: Constructing a binary tree-tiling: the first 3 iterations.

Let’s use the term depth (d) to describe how far a tile is from the root tile. The root tile has d = 0,
children of the root tile have d = 1, grandchildren of the root tile have d = 2, etc.

112Exactly why we should do this will be discussed in Section 6.5.

117 of 155

[git] = 43830880 = 2025-07-22

6.4 Recursive Proof of Reflection

This scaling configuration is UTy, and each of UT;, UTy, and UTj3 have a corresponding tiling
configuration: UTyy, UTxo, and UTys.

6.4 Recursive Proof of Reflection

So far, we’ve defined the ‘shape’ of our tiling, but we don’t know much about whether it is (or even
can be) secure. Before we cover that in Section 6.5.2, we need to cover a new idea that we are
currently missing: recursive Proofs of Reflection. The reason for covering recursive PoR first will
become obvious, but for now, notice that the leaf tiles in Figure 35¢ are 3 reflections away from
the root tile. Eventually, we will need to answer at least these two questions: Can the chains in
those leaf tiles be secured by the root tile? and How do we do this? Recursive PoR provides the
foundation that we need to answer those questions and analyze the security of our constructed
tiling.

Let us begin with the simplest case of recursive PoR: 3 chains that do not form a simplex.

6.4.1 Simple Recursive PoR: L <+ M < R

Say we have three chains: L, M, and R. They are doing mutual reflection like this: L <> M <> R.
That is: L reflects M but not R; M reflects both L and R; and R reflects M but not L.

With what we already know, it’s clear that M is as secure as all three combined. However, that isn’t
the case for L and R. How can we make L and R as secure as M without having them mutually
reflect one another? Is this even reasonable?

Let’s consider chain I — what happens if L’s local chain-work is, say, 3x that of chain M? The
total chain-work that L takes into account is 4/3 of its local chain-work, so an attacker would
need 2/3 worth of L’s local chain-work to control L’s history. This is more than 50% of L’s local
chain-work, but, depending on R, it’s within reason that an attacker might achieve the required
hash-rate.

Case 1: If R’s local chain-work is large (say, 3x that of M), then M is almost twice as hard to
attack as L.''® This is a problematic situation: it means that an attacker might be able to perform
a doublespend against L even though they could not perform one against M. Therefore, this case
would not be O(n) secure.'

Case 2: However, if R’s local chain-work is small (say, 1/3 that of M), then R is not particularly
significant. Thus, M is not substantially harder to attack than L, and an attacker could attack both
L and M simultaneously (optionally, R too). But, R is substantially easier to attack than either
M or L. The total chain-work that R takes into account is only 4/13 that of the whole network. So,
this case is also not O(n) secure, even though L is O(n) secure.''”

These two problem cases are what recursive PoR solves.

Notice that in both cases, M is O(n) secure. Given this, chains L and R should be able to use the
same work that chain M does to reach the same level of security.

The first problem is that L and R cannot use the same WEIGHTOF algorithm as before (although,
M can). Particularly, L and R’s WEIGHTOF must count: not only their local chain-work and that
contributed by reflected M blocks, but also some additional weight based on reflections from other
chains. Each M block might record the total chain-work that it adds to M (including PoRs), but
L and R’s new WEIGHTOF can’t use this value directly. Firstly, that value includes past local
chain-work that reflected M (which includes both L and R blocks). But more importantly, we
don’t want to force L and R to verify every PoR that contributes to M, just the ones that matter.
So how can L and R nodes know which work to count?

M3 M is 7/ax harder to attack than L.

H147f something is “O(n) secure”, that means that it is as difficult to attack as attacking the entire network. For a
particular case to be O(n) secure, each chain in that case must be O(n) secure.

1157, is secured by 12/13 of the network. While that is less than 100%, it is not substantially easier to attack than
M, so, arguably, the security of L and M is of the same order.

118 of 155

[git] = 43830880 = 2025-07-22

6 UTy: TILING SIMPLEXES

There is a trivial solution to this problem: require L and R nodes to download the headers of all
relevant chains, verify relevant PoRs, and track the origin of those PoRs.''® Nodes must track the
origin of work contributed via PoR to avoid double-counting work. An easy example of this is: L
nodes should not count M’s PoRs where an L block is the reflecting block; that work is already
directly included in L’s local chain-work.

Chain L can only count work contributed by R after a multi-stage PoR can be constructed. For
example, let’s consider the (rather orderly) chain-segments in Figure 36.

e R (R[]

Time

Figure 36: A diagram of chain-segments demonstrating the simplest case of recursive PoR. Solid
arrows indicate the usual child-parent relationship, and dotted arrows (<) indicate reflection.

We can see that Ryio implicitly reflects Ly via Rpi2’s explicit reflection of M; ;. We can use
this implicit reflection because the network already depends on all the PoRs that are sufficient
to prove it. L;o’s PoR for L;11 will prove L;jq < Mji1 (i.e., that L;11 was reflected by M;i1).
M;,2’s PoR (via R) for M, will prove M4 < Ryyo. We combine these two for the full path by
which Ry implicitly reflects Ljy1: Lip1 < Mjpq <+ Riqo.

Similarly, we know that L; 3 implicitly reflects Ryi2: Rpqo < My < Liys.

Thus, for L;;3, we can construct a full recursive PoR of L;;1 via Rj49 using the proofs for each
link between them: Li+1 < Mj+1 N Rk+2 < Mj+2 N Li+3~

Since L nodes already know about all the M and R blocks (and the relevant PoRs), the full recursive
PoR does not need to be explicitly recorded. 1t is already known to all L nodes, since each part of
the recursive PoR is available in one of the L, M, or R chains (it is explicitly recorded if a +PoRs
UT variant is used, and recalculated by the node otherwise).

In Section 2.7, we discussed the idea that a PoR can only contribute to local blocks that are in
the reflecting block’s past. By inspection, we can see that the most recent R block (the reflecting
block) in L;13’s past is Ri12, and the most recent L block (the local block) in Ry1o’s past is Ljyq.
Thus, we can see that our method for attributing reflected work — following the arrows — works
for recursive PoR, too.

There is something important to point out here: latency. Notice that these 3 blocks (in chronological
order) are required for this recursive PoR to exist: M;ji1, Rpqo, and Mj . A non-recursive PoR
only needs to wait for 1 reflecting block to be produced (after which the PoR counts as draft
reflected work). So, in this case, the expected delay will be 3x normal (assuming all chains have
the same block periods). In general (if only one PoR path between two given blocks will exist) this
delay, measured in block periods, is equal to the length of the full PoR (excluding L blocks), which
equals 2d — 1, with d being the distance (in PoRs) between the chains.

Recapping the first problem: L and R nodes need an expanded WEIGHTOF function with access to
the origin of implicitly reflected work, and knowledge of where that work has already been counted.
Nodes can do this relatively efficiently, for all relevant chains, by downloading the headers and
verifying the PoRs. This method does not require recursive PoRs to be explicitly recorded in full
since the components of these PoRs are already available and have already been individually verified.
Our existing rules about how to attribute the weight of PoRs (follow the arrows) still works.

116While this solution is trivial, it is also limited. It’s fine for a few chains, but in the case of a full tiling, especially
with a few layers, we will hit bandwidth limitations at some point. Discussed more in Section 6.4.3.

119 of 155

[git] = 43830880 = 2025-07-22

6.4 Recursive Proof of Reflection

Our solution to the first problem is promising, but we have used an implicit assumption: there is
only one viable path for PoRs between L and R. What if there are multiple paths between L and
R? This is the second problem.

6.4.2 Recursive PoR with Multiple Paths

Say that we now have four chains: L, M, M?, and R doing mutual PoR like so:

Both M! and M? are already O(n) secure. Assuming that L and R nodes download and verify all
PoRs, how can L and R count each other’s work?

First, let’s consider when L can definitely count all the work contributed by a R block.

o [l [La
Y- . : Y. - :
” . = STl e E
. - 1 - 1 g
e My e [My
Y/»,_:' l"»,_:'
i 2 . E 2 .
Y Tl N e Yo
oo [Fota) e [

Time
Figure 37: Note that reflections between M' and M? are not shown.

As before, we’ll look at valid PoRs for L;;3 that prove L;y; was reflected in Ry1o. The exact
reflections that exist will be analogous to our prior example, too. See Figure 37 for the chain-diagram.
Notice that there are 4 possible paths from L;;3 to L;11:

1 1
Lo Mg+l for Lo Mg+2 Co
Li Li+1 ¢ . Rk+2 ¢ . L'L+3 Li+4
MR Y M2,
h+1 h+2

Here is what we can say about this case: if all 4 of these PoR paths exist, then Ryio definitely
reflects L; 11, and its weight can be included in L;;3’s total chain-weight.

But, what if only some of those paths are available? Consider this alternative case:

1 1
ng+1 A o M9+2 v
Li~ Liyi Rpyo g Lits Lita
2 2
M Mi o

In this case, multiple L blocks are implicitly reflected in Ry, and L; 3 has two possible recursive
PoRs of this: L;y; via M,%_H; and L; via Mglﬂ. Are both valid? Is either preferable? If L;i3
includes the full weight of Ry o in its chain-weight, then what happens when L;,, is mined and
the other two PoR paths via M} 4o become available?

We can be sure that Ryo’s weight can be fully included in L’s chain-weight after L;,4 is mined
(since all PoR paths now exist). However, it’s not so clear what we should do when not all PoR
paths yet exist.

Let us approach this from these principles:

120 of 155

[git] = 43830880 = 2025-07-22

6 UTy: TILING SIMPLEXES

e A reflecting block can only contribute work once — we should not count work more than
once.

e A PoR contributes as much work as an attacker would need to perform to create a competing
PoR of the same weight.

Firstly, we can say that the total work contributed by all possible PoR paths is equal to the sum of
local work contributed by each unique block in those paths to their respective chains. That is: no
work is counted twice, and all blocks in a PoR path contribute work.

Secondly, consider that the work contributed by an individual PoR is equal to the amount of work
that an attacker would need to do to produce an equal and competing PoR. This means that
any PoR path proving that Rjio reflects L;;1 is worth at least as much as Rgyo. Additionally, a
recursive PoR is, in isolation, worth ezactly as much as the sum of weights of each block in that
PoR (excluding local blocks).

Thus, we can safely add Ryy2’s full weight via L; 13 (and that weight is attributed to L;; since it
is the most recent L block in Rjyo’s history). An attacker would need to produce at least as much
work as Ry4o to perform doublespend against L after Rjy2’s reflection of L;; has been counted
(assuming the doublespend competes with L;11).

Therefore, only the first available recursive PoR via Rjs matters. The number of paths from
Rj42 to past L blocks is not relevant: L; is in the history of L; 1, and Rjy2 can only count once.
Additionally, the number of paths from L blocks to Ry42 is also not relevant, since Rj4o is in the
history of all such blocks. Having multiple paths does provide some benefit (as there must be some
new reflecting blocks, at least initially), but there will almost always be shorter PoRs that provide
the same benefit.

Another way to look at multiple paths is that an attacker (who is attacking L, M*, M?, and
R) does not have to do any additional work to generate multiple redundant paths (besides the
additional work that is directly involved in creating new blocks).

Notice that we do not require that a recursive PoR use the same chains in each half of the PoR.
Of the 4 possible PoRs, the preferable one is: L;11 < M}ZL_|r1 ¢ Rpqo < Mgl+2 ¢ Liy3.''T We go
from L; 3 to Ryyo via M*, and from Ryyo to L; 1 via M2,

We also can now reason about paths that are longer than the shortest possible path. For example,
consider that M! and M? reflect each other (although this is not shown in our chain-segment
examples). There could be PoR paths that include multiple blocks from M' and M? (e.g.,
Li¢ M}y ¢ MP ¢ Rpyo < My, o< Liyg). Whilst these kind of paths are valid, they are not
that useful: in the example, we expect that M7 1 already reflects an L block, either L; directly or
a more recent L block.

Finally, let’s consider the issue of latency again. Now that there are two possible chains to use
going from L to R and vice versa, how long should we expect to wait for draft reflected work via R
to appear?

After the first L block is generated, we need to wait for a block from either M or M?2. That takes
0.5 block periods on average. Next, we wait for a block from R (1 block period on average), and
then for another block from either M or M? (0.5 block periods). So the expected waiting time is
2 block periods.

If we had two possible R chains (R! and R?), then we’d expect to wait only 1.5 block periods for
draft reflected work from either R! or R?. That configuration would look like this:

M!'+— R!

Ly 1 7
NM2><—<>‘R2

117This recursive PoR path is preferable because it is from the first possible L block to enable a PoR. via Rpy2, and
goes to the most recent L block in Ry2’s history.

121 of 155

[git] = 43830880 = 2025-07-22

6.5 Tree-Tiling Security

In general, for a recursive PoR of length 2d — 1, where each reflection could be provided by
Ni(v +1)~! possible chains, the expected latency of draft reflected work is Ny ' (v 4+ 1)(2d — 1)
block periods. We divide N7 by v + 1 because each simplex-tile’s capacity for reflections is divided
equally between v other tiles and itself. This is directly relevant to how fast work propagates within
a tiling.

Note that this does not work for a standalone simplex (d = 0 = 2d —1 = —1) because we
are looking particularly at when recursive PoRs become available (i.e., a draft local block could
include them for the first time). In a two-simplex tiling, though (which is equivalent to a standalone
simplex), we can see that that d =1 = 2d — 1 =1 (each PoR is of length 1), and v = 1, so the
expected latency of draft reflected work from the other tile is 2 - Ny ! block periods, which, in
seconds, is 2 (N1By)~ ! =2 C'™! (as expected).

For a leaf tile at d = 3 where each tile has 5 chains and v = 3, as in Figure 35¢, the expected
latency is 1 block period.''® If, instead, each tile had 50 chains, the expected latency is 0.1 block
periods. We will revisit this in Section 6.5.4.

6.4.3 Data Availability

The Axiom of Availability states that miners must download all blocks from all simplex-chains
before reflecting the corresponding header. This works fine for small examples like those we've just
considered, but, in a large''? tiling, the sheer volume of data will become a problem at some point.

I don’t have a solution for this. In principle, it’s not clear that it’s even possible to solve without
resorting to some form of centralization or group effort. The immediate problem with those kinds
of solutions is that even if someone else has the blocks, they always have the option of refusing
to share them later — verifying that the blocks exist is not enough. These kinds of solutions are
substantially different to all the other solutions in this paper and we’ll leave these problems for
future research.

The good news is that this problem is not tiling specific. Every other network dealing with a lot of
data has a similar challenge to solve, and they will hit this wall before UT due to higher validation
requirements. It’s plausible that if a solution is found, it could work for tiling, too.

Could we use PoS in the outer tiles to mitigate this somehow, similar to dapp-chains? Perhaps, but
tiling is a different context to dapp-chains. For one, using a single root token over the entire tiling
means that we need stronger guarantees about conservation of coins, cross-chain transactions, etc.
Dapp-chains will be created by users for some purpose — we know from the start that there is a
party invested in that chain’s ongoing operation. Dapp-chains are also somewhat sandboxed and
the disappearance of a dapp-chain does not result in a network failure. Simplex-chains in tiles have
neither of those properties, and a failure could have disastrous consequences (e.g., if some tiles are
severed from the main tiling). So, while PoS could play a role in a solution, it’s not obvious what
that solution would be.

6.5 Tree-Tiling Security

What does it mean for a tiling to be secure? Well, we have our broad definition from the trilemma:
the network is secure against an O(n) attacker. To answer this more specifically, though, we need to
first answer: What does a doublespend against a tiling look like? Currently, we don’t know enough
to answer this — we next need answers to questions like Which PoRs do simplex-chains in a given
tile use? and How do we govern the difficulties of simplex-chains in different tiles?

To answer these questions, and then evaluate the security of tree-tiling, we first need to define some
key concepts. After that we will construct a security architecture so that we can answer the above
questions. Finally, we will analyze this architecture to find out if it’s secure.

18Note: N1 = 20 in this example, and N7 = 200 in the next.
119particularly, a tiling that has significantly more capacity than a standalone simplex with equivalent parameters.

122 of 155

[git] = 43830880 = 2025-07-22

6 UTy: TILING SIMPLEXES

6.5.1 Key Concepts
6.5.1.1 Local Chain-work, Tile-work, and Unit Tile
We're familiar with local chain-work (that’s work directly contributed by a single simplex-chain).

Tile-work is the work that is contributed from simplex-chains that are part of a given tile. Tile-work
is the sum of the local chain-work of each constituent simplex-chain.

We could talk about tile-work directly in terms of number of hashes, but this isn’t necessary. Instead,
we’ll normalize tile-work via a unit tile. If some tile’s tile-work is 3x that of the unit tile, then we
write down that tile-work as 3 instead of some number of hashes. This will simplify our analysis.

6.5.1.2 The Core

The core of a tree-tiling is the root tile and its children. It’s called the core because all nodes in the
network verify the work and PoRs of all simplex-chains that are part of the core. Additionally, the
core is where the vast majority of chain-work is done.

6.5.2 Security Architecture

The literal keystone of our tiling is the root tile, which is at depth d = 0. Most of the network’s
total chain-work will be produced by chains in the root tile. We’ll guarantee this for d > 1 (i.e., all
other tiles) via the RAA by enforcing an upper limit on each tile’s tile-work.'?" This upper limit
will exponentially decrease as the depth of the tiling increases. Even though tiles at d > 2 will
produce substantially less tile-work than the root tile, they will use recursive PoR to be at least as
secure as the core.

The purpose of this design is to enable the following argument for O(n) security:

1. Attacking a single chain in a single simplex-tile is at least as difficult as attacking the entire
tile and its neighbors (Section 4.10).

Attacking any tile is at least as difficult as attacking the core (via recursive PoR).
99% of work is done in the core.
Therefore: the core is secure against an attacker with ¢ < 0.495.

If ¢ < 0.5 is O(n) secure, then ¢ < 0.495 is also O(n) secure.

A T e

Therefore: attacking any single chain in any tile is as difficult as attacking the entire tiling,
and thus the network is O(n) secure.

6.5.2.1 Inter-tile Security Relationship
Since each tile has v — 1 children, we will let © = v — 1 for convenience.

We will limit each tile’s maximum tile-work production, measured against the unit tile, using the
following rules:

1. The root tile produces at least M units of tile-work (M > 1; M stands for “multiplier”).

2. Each non-root tile is limited to »~¢ units of tile-work (r > u > 2) where r is a network-wide
constant.

The RAA sets the block reward so that each tile produces an appropriate amount of tile-work.
The root tile has no upper limit on tile-work production. If a tile would have aggregate rewards
greater than its upper limit, then the block rewards of constituent chains are proportionally capped
and any excess is allocated to the parent tile. This process continues until all tiles are under their
respective limits.

120This also means that we’re only considering the PoR context of a single root token.

123 of 155

[git] = 43830880 = 2025-07-22

6.5 Tree-Tiling Security

6.5.2.2 Total Work Across a Tiling

How much tile-work is produced over the complete tiling? Let’s construct a sum of tile-work over
the complete tiling.

The root tile produces M units of tile-work. At depth d > 1, each tile produces r~¢ units of

tile-work, and there are u¢ such tiles. So at depth d there is at most (ur—1)? tile-work produced.
We’ll assume that tiles produce the maximum amount of tile-work possible. The sum (S) of all
work over the tiling is thus:

2,3
S:M—G—E—F%—F%—F"' Sum all chain-work
roor2oor
SoM-p =14ty
N roor2 s

This is a geometric series, and since % < 1:

1
S—M-1)= T u Sum of geometric series
S—(M-1)=— o T
r—u T
S=M-14 " (57)
r—u

6.5.2.3 Doublespend Requirements

A traditional PoW blockchain is secure against an attacker with less than 50% of the network hash
rate. In terms of p and ¢, this threshold is ¢ < 0.5.

While we maintained this threshold for simplexes, we will relax is very slightly for tiling. Instead of
q < 0.5, we will pick a threshold that is very close, but slightly lower. This leaves some wiggle room
for us to use PoW in other tiles (outside the core) without weakening the network in a significant
way. Choosing ¢ < 0.495 (half of 99%) is somewhat arbitrary — in that we don’t have a reason to
choose it over 0.496 or 0.494 — but it meets our other goals and gives us a nice round number (99%)
for the proportion of work done in the core.

For the purpose of this paper, it is assumed that: UTy being secure against an attacker with
q < 0.495 counts as O(n) secure. (That is: ¢ < 0.495 is good enough.)

6.5.3 Analysis
How can we analyze the security of tree-tilings?

We will consider multiple cases, and in each case establish a bound on r in terms of u, ¢, and M.
The intersection of these bounds on r from each of these cases will yield the values of r for which
tiling works (i.e., it is secure). The value of ¢ that we choose will determine how difficult the root
tile is to attack, relative to the entire network — we will choose ¢ < 0.495 as an acceptable bound
on ¢, so ¢ = 0.495 is our threshold. The cases that we analyze will cover all possible positions of a
tile in the tiling.

The primary case for us to analyze is that the root tile is secure against an attacker with ¢ proportion
of the network-wide hash-rate. Additionally, we need to figure out when a tile (or branch) could be
severed from the tiling.

6.5.3.1 The Core is (Almost) as Secure as the Network

Let’s constrain the core to being secure against an attacker with up to ¢ proportion of the network-
wide hash-rate (0 < ¢ < 0.5).

The amount of work that attacker is capable of is at most ¢S (via Equation 57). And the amount
of work securing the core is the sum of work contributed by the root tile and its immediate children:

124 of 155

[git] = 43830880 = 2025-07-22

6 UTy: TILING SIMPLEXES

M +u-r~1. The core is not secure when the attacker is responsible for more than half of the work
securing the core. Thus, the core is secure when:

1
5(/\/1 + E) > qS Assume that the core is secure
T
1
5(/\/17" +u)>qgr(M—-1+ -) x r and substitute S (Equation 57)
r—u
(Mr+u)(r—u) > 2qgr((M —=1)(r —u) +r) X 2(r —u) (58)

v _ 2y M ~ cnnlify 2!
r > M (M 1+ \/(M 12+ 2 Solve quadratic & simplify (59)

This is our first bound on 7. If u = 2, M =8, and ¢ = 0.495, then r > 8. Therefore, the hash-rate
dedicated to the root tile is ~64x that of its immediate children.

6.5.3.1.1 Limiting the Number of Children of the Root Tile

Earlier, we limited the number of children of the root tile (in a tree-tiling) to v — 1. This means we
can fit twice as many chains in the root tile, and so the hash-rate of the root tile is spread over
twice as many chains, and the confirmation rate is doubled (excluding confirmations from external
reflections). It also means that hash-rate is less spread out over the tiling, and that the method
used above and in Section 6.5.2.2 is relatively simple. Finally, it means that we can grow a simplex
to 1/2 of its maximal capacity without committing to any particular details of the tiling scheme
(besides the proportion of reflection capacity left for child tiles).

6.5.3.2 Severing Tiles

Is it possible to sever a tile from the tiling? Tiles outside the core have a very small proportion of
the network’s hash-rate. If all of that tile’s miners deliberately censored PoRs with the parent tile,
the tile would be severed from the rest of the tiling. If one was severed from the rest of the tiling,
performing a double-spend might be trivial.

Assuming r > 2, r > u, and d > 2, a tile’s chain-work is less than half that of its parent. As we’ve
seen, the amount of work available to the tile via recursive PoR is much greater. Thus, the PoR
graph of that tile is easily dominated by any block that can establish recursive PoRs with the core.

Since we're outside the core, the local tile will produce approximately »~¢ work (in terms of the

unit tile), and its children will contribute ur— (1) work at most. Note that ur— (1) < =4 By
comparison, the work contributed by the parent tile is M +7"1+r=24... 4=~ Given M > 1,
the volume of work contributed via recursive PoRs is at least Mr/2 > Mr?=! times greater than
the work contributed by the tile and its children. Therefore, one honest miner in that tiling can
prevent severance by producing, at most, 1 block for every Mr¢~1 blocks produced by the attacker.

If the attacker wishes to avoid this incredible disadvantage, they must attack the parent tile too.
This continues recursively until the attacker reaches the core, at which point they must attack the
entire network.

If an attacker is attempting to sever a child tile instead, the situation is similar, except that their
disadvantage is at least a factor of Mr?=2 compared to an honest miner.

Given that honest miners have an overwhelming advantage in these situations, we can skip examining
both how this interacts with the DAA and RAA, and the opportunity cost to the attacker of
attempting such an attack. Instead, we’ll assume that such an attack is impractical, and leave the
analysis for future research.

Regarding doublespends, we can conclude that, while it might be possible to disrupt a tile for a
short while, all we have to do is wait for recursive PoRs via the core to thwart the attack.

121We can quickly verify that Equation 58 and Equation 59 are identical for w,r > 1 by graphing them.

125 of 155

[git] = 43830880 = 2025-07-22

https://www.desmos.com/calculator/7pzmo7t8tc

6.6 Scaling Complexity

6.5.3.3 Analysis Conclusion

We have established bounds where the tiling is secure against severance attacks and doublespends:
Equation 59, u > 2, r > u, and M > 1. Practically, values of u =2, M =8, r > 8 meet our goals.

6.5.4 Security Propagation Speed / Finalization

Typically, “finalization” refers to a breakpoint whereafter it is practically impossible to revert a
transaction.

As we saw in Section 6.4.2, PoR paths form quickly between tiles. Particularly, this depends on the
number of chains in each tile, Ny(v + 1)7!, and the block period.

How long does it take for a block in some tile to be secured by the root tile?

When a block in a tile is produced, miners in the parent tile will reflect it after some propagation
delay, ¢. The expected waiting time is the propagation delay plus the expected time between blocks
(of any chain) in the parent tile. After any block in the parent tile has reflected the first block,
this process repeats for the parent tile and its parent (i.e., the grandparent of the original tile).
Eventually, we reach the root tile, and the reflections begin to propagate back down towards the
original tile. (Of course, the reflections propagate in all directions, but we are only concerned with
the first path to form between the original tile and the root tile.) We can thus express the expected
waiting time until the first recursive PoR with the root tile forms as:

v+1 v+1
(Nle +0)(2d-2)+ (2Nle +9)
A D@d=8) (60)

2N, By

Ignoring ¢ makes it easy to see how fast this is: given v = 3, d = 10, N; = 200 chains, and
By = 1/15 Hz, we can expect a recursive PoR to be available approximately 5.5 seconds after a block
is produced. d = 10 implies that the tiling has at least 10 layers. Such a tiling has > 1024 tiles.'*?

Alternatively, if we set ¢ = 0.5, then we’d expect the same recursive PoR, to be available in ~15
seconds (which happens to be 1 block period in this case).

6.6 Scaling Complexity
6.6.1 Capacity

The tiling is an (v — 1)-ary tree; assuming it is balanced and has a maximum depth of d, the number
of tiles, Nijes, in the tiling is:
(v—1)*t —1

Ntiles = v_2

(61)

Each tile in the tiling has Ny(v + 1)~! chains — except, of course, the root tile which has twice as
many. Thus, the total number of chains in the tiling is

Ny
Nnin<: Ni S 1
chains (tiles 1)U+1

o Nl(’l)—].)dJrl—]. + N1
(v =2)(v+1) v+1

When v = 3, we have:
Nchains = 2dil]\fl (62)

Clearly, the number of chains depends on how many layers we create, which is determined by
demand and systemic constraints.

122The tiling needs at least 1 node at d = 10, so we assume d = 9 is full. In a full binary tree down to a depth of 9,
there are 210 — 1 nodes. 210 — 1+ 1 = 1024.

126 of 155

[git] = 43830880 = 2025-07-22

6 UTy: TILING SIMPLEXES

Assuming the demand for capacity is O(n), and each chain provides O(c?) capacity (where i = 1
with no dapp-chains, i = 2 with 1 level of nesting, etc), we can argue that O(29=1) = O(nc™*71).

There is at least one physical constraint that will eventually limit us. Assuming all simplex-
chains in the tiling use PoW, there will eventually come a layer where we run out of bits to use
in the hash. If we had, say, 96 bits to work with (assuming a 256 bit hash), then we’d have
~(96 — logy(M))(logy(r)) ! layers to work with.

Given N1 =200, M =8, r =8, and v = 3, we could support up to ~31 layers, which is more than
10" simplex-chains in total. Granted, there are other constraints that we will be limited by.

6.6.2 Recursive PoRs

Consider some block in some tile outside the core. Given v = 3, there will be N1/2 blocks produced
in the root tile between this block and the next block. We only need to include one recursive PoR
with the root tile to gain the weight of all those blocks — particularly, the recursive PoR goes via
the most recent block we know of in the root tile. Also, the other chains in the tile will include
recursive PoRs via many of those root tile blocks in the intervening period. In principle, then, we
shouldn’t need much additional data than these PoRs.

Each merkle (or verkle) branch in such a recursive PoR is O(log ¢). There are O(d) = O(log(nc™*"1))
many such branches. Thus the resulting complexity is

O(log(c) log(nc™""1)) = O(log(c) (log(n) — (i + 1) log(c)))
= O(log(c) log(n))

6.6.3 Bandwidth

The primary bandwidth constraint on a full node for some chain in some tile is the PoR graphs
for each tile between the local tile and the root (inclusive). Since we’ve already established that
following the PoR graph of a simplex is an O(c¢) bandwidth load, the overall bandwidth load is

O(clogn — c(i+ 1)logc) = O(clogn)

A miner, though, needs to verify the availability of all those blocks — an O(c?) bandwidth load per
tile. Therefore they have an associated bandwidth load of O(c?logn). Assuming that we are using
network and chain parameters such that the overall bandwidth requirements of a maximal simplex
are tolerable (see Section 5.8), it’s not out of the question that multiplying by a factor of O(logn) is
also tolerable. That said, this will be a constraint at some point if the network grows large enough.

If every block from every tile is downloaded, then we naturally have an O(n) load. However, in
smaller tilings we actually save bandwidth compared to a maximal simplex of the same capacity.
This is due to the simplex tiles themselves being smaller and reducing PoR graph overhead. So,
even though the complexities of a tiling are naturally larger than a maximal simplex, there are
configurations that increase overall capacity within the same constraints.

127 of 155

[git] = 43830880 = 2025-07-22

7 Attacks

Ultra Terminum — with appropriate configuration — is resistant to the following attacks; see the
linked section for discussion:

o 51% Attack, see Section 2, Section 4.8.3, and Section 4.10.

e Selfish mining, see Section 4.7.

e Reflection without publication, see Section 4.1.

e Empty block DoS and censorship, see Section 4.8.

e Nothing at Stake and long range attacks, see Section 2.6 and Section 3.4.
¢ Intra-simplex cross-chain attacks, see Section 4.11.

7.1 Dialog: Attacks and Mitigation

Aside This is a fictional dialog between a malicious actor (EMalo) and myself. The factors in
play — like the number and types of simplex-chains, the PoW algorithms used, the ROO
distribution, etc — were chosen to represent a young UT network. The real Amaroo network,
when it goes live, will be different. The point of this dialog is to give you an intuition for the
effect of these factors; it’s intended to help answer the question Why is attacking UT harder
and more complex than attacking traditional consensus methods?

This is the beginning of your direct message history with @QEMalo

EMalo I have an offer for you. I'm planning on doing a doublespend. It’ll destroy confidence
in your system. If you pay me, then I won’t do it.

Uhh, okay... IDK if you're credible tho. Convince me and I'll consider your “offer”. Max

EMalo I have a bunch of sha256 ASICs. I know that one of the simplex-chains uses that,
and it doesn’t have that much hashing power behind it, so I'm going to attack it.
Std stuff.

You’re going to mine in private and then publish after enough confirmations? Max

EMalo Yeah.

The sha256 simplex-chain only has 6% of the ROO supply on it. Plus, there’ll be Max
way too many reflections by the time you try to publish.

EMalo Wait, what do you mean “reflections”, and why does 6% of the supply matter?

Once a block for one chain is published, its existence gets confirmed by the other Max
chains. That’s a reflection. There are 15 other simplex-chains, so every sha256 block
gets roughly 15 other confirmations before the next sha256 block gets produced. The
number of confs is a bit random, so mb it’s a few less or a few more. The point is
that the honest chain will weigh like 15x more than your privately-mined chain, even
if your hash-rate is 20x the honest hash-rate.

The 6% of supply matters b/c the sha256 chain can’t have more than 6% of the total Max
security of the system. Whatever work is done on the sha256 chain is always 6% of
the total network security. You can mb push out some of the other sha256 miners,
but that doesn’t help you do a doublespend. It just makes them less profitable for a
bit, and you waste money running your miners.

128 of 155

[git] = 43830880 = 2025-07-22

7 ATTACKS

EMalo I can still selfish mine.

No you can’t; selfish mining works b/c you keep some blocks unpublished. If they’re Max
not published then they don’t get reflections. The honest blocks have an advantage
b/c they’re published immediately.

EMalo I have lots of other ASICs too. And GPUs. I’ll mine the ethash chain and the scrypt
chain and the cuckoo chain too and just reflect my blocks. Then I’ll publish them all
at once.

EMalo

and you waste money running your miners

That’s not a problem. The attack will cost you more than it costs me.

Even if you mine those other chains, that’s still only 4 out of 16 chains. And they Max
only hold about 30% of the ROO supply anyway. The honest chains will still have
like 3-4x the work of your chains, if not more.

Say that you did try to attack all the PoW simplex-chains, what about the PoS Max
ones? You need to attack those first if you want to 51% the PoW chains.

‘ The attack will cost you more than it costs me. Max

We'll see.

EMalo I have lots of ROO for PoS chains.

‘ I have lots of ROO for PoS chains. Max

GL with that. Since the PoS chains are reflected in the PoW chains, you can’t screw
with their history to brute-force a favorable quorum — you’d have to rewrite way
too much PoW history for that. If you’re already PoS mining, then your stake will
get slashed the second you publish, so the rest of the network will calc those PoS
blocks to have a negative weight.

Not to mention that you can’t attack the PoA simplex-chains, anyway. The honest Max
network’s always going to have an extra 20% on you.

EMalo Since the PoS chains are reflected in the PoW chains, you can’t screw with

their history to brute-force a favorable quorum — you’d have to rewrite way
too much PoW history for that.

Like I said, it’ll cost you more than it costs me. Have you forgotten that I can
launch these attacks simultaneously?

simultaneously Max

That’s just it. You can’t. Attacking the PoS chains requires set-up, which means
that you need to attack the PoW chains *at an earlier point in time* than the
moment of launch. But attacking the PoW chains won’t succeed without the
reflections from PoS chains. And if you want to provide lots of PoS reflections, well
you need to attack the PoW chains *even further* back to do *that* set-up. Do you
see the problem here? Your only option is to *start from the genesis blocks*.

129 of 155

[git] = 43830880 = 2025-07-22

EMalo

EMalo

EMalo

7.1 Dialog: Attacks and Mitigation

I can still attack some dapp-chains.

How? Dapp-chain history is secured by the PoW done in the simplex. If you try,
then your stake will get slashed and things will go back to normal. It’s more like a
donation than an attack.

Fine. T’

1l just DoS your chains instead. Like Luke-Jr did to Coiledcoin.

Did you forget that UT uses a block-dag? The honest nodes will just build on your
blocks and include any txs that you don’t. It might take a few minutes, but soon
enough the honest blocks will weigh too much for you to catch up (b/c they build on
your blocks too). That won’t help you doublespend, and the DoS vector doesn’t
work. You're just adding to the security of UT, not reducing it.

Then I'll make bad blocks. They’ll get reflected and will screw with the simplex’s

history.

No they won’t. If you try to get headers reflected without blocks, then other miners
will reject them b/c the blocks aren’t available — there’s no point reflecting them
b/c there’s no benefit to the miners. If the blocks are invalid, then they will get
reflected, but miners on that particular chain will link to them as an invalid uncle.

So if you make invalid blocks, sure nodes will need to store those blocks for a bit (so
that they know they were invalid), but after a while all that is prunable. It’s a short
term inconvenience that still helps the security of the network long term. Plus you
won’t get block rewards doing that — so it’s actually worse than just making empty
blocks. For you, that is.

Still there?

Your message could not be delivered. This is usually because you don’t share a server with
the recipient or the recipient is only accepting direct messages from friends.

130 of 155

[git] = 43830880 = 2025-07-22

Max

Max

Max

Max

Max

Aside

8 CONCLUSIONS

8 Conclusions

8.1 Addressing the Blockchain Trilemma

Our journey is coming to a close, and it’s time we finally answer the question Does UT solve the
Trilemma? First, let us consider UT};.

The decentralization criterion states that the system must function when each participant has
only O(c) resources. We codify this with the chain-parameter k, a generalization of block size,
which we define to be O(c). Typically, we've set k = 3000 bytes/second since this is close to
the real-world value of k for Bitcoin and pre-merge Ethereum, and is therefore, self-evidently, an
acceptable value. We’ve also set & = 20000 in some tables so that we have an idea of what we
could do if we pushed UT further. The Axiom of Availability means that miners must download
all blocks — an O(c?) load. However, miners do not need to validate all blocks, or store them for
very long; and these blocks aren’t required to synchronize with the PoR graph. Therefore, if we
fail the decentralization criterion it will be because of bandwidth: AS. But, what is AS? Way
back in Section 1.1.2, I suggested a test for whether UT; passes or fails in this sort of situation:
is this a bottleneck or is there excess capacity? In Section 5.10 we saw that, when k& = 3000,
reasonable network parameters meant AS € [293,2188] kB/s. This equates to AS € [759, 5184]
GB/month. Currently, Digital Ocean offers'”? a VPS with 5 TiB/month (outbound) for 48.00 USD.
By inspection, this is O(c), so, at k = 3000, the AS requirements on miners is not a bottleneck.
Therefore, with appropriate parameters, UT; passes the decentralization criterion.

The security criterion states that the system must be secure against an attacker with O(n) resources.
The standard way to check if a PoW system passes this criterion is whether it is resistant to a
51% attack. We saw in Section 4.10 that UT; is indeed secure against a 51% attack. We also saw
in Section 4.11 that cross-chain transactions within the simplex were as secure as the network.
Therefore UT, passes the security criterion.

The scalability criterion requires that the system can process more than O(c) transactions.
Given k = 3000, ¥TPS; € [10%,8.4 x 10%]. By inspection, 1000 TPS is more than O(c).
Therefore UT; passes the scalability criterion.

Thus UT satisfies all 3 trilemma criteria as put by Vitalik.

At k£ = 20000 B/s, AS € [10,93] MB/s, or AS € [25,241] TB/month. This is definitely
beyond many ordinary users, but would work for miners at some economy of scale. (241 TB
costs ~2235 USD/month® from Digital Ocean.) Such a simplex would have N; € [10%,10%]
chains, and XTPS; € [4 x 10%,3.8 x 10°] TPS.

2Jan 2025; see https://docs.digitalocean.com/platform/billing/bandwidth/

Second, let’s consider UTy and UTsj.

On the assumption that a secure O(c) PoS chain exists, then using that for dapp-chains provides an
O(c) bump to scalability. The additional computational burden to a miner or full node is negligible,
so UT, satisfies the decentralization criterion. The security of the simplex isn’t affected, and the
dapp-chain is more secure than the PoS chain would be in isolation, so UTy satisfies the security
criterion. Since the dapp-chains are PoS, their effective header size will be greater than what is
used for the calculations in Section 5.10. Assuming that the effective header size of dapp-chains
is 10x larger than in Section 5.10 (and k = 3000, of course), we see that Ny € [5 x 10%,4 x 104
dapp-chains. We also see that XTPSy € [6 x 1045 x 10%]. By inspection, 60,000 TPS is a lot.
Therefore, UT5 satisfies all 3 trilemma criteria as put by Vitalik.

On the assumption that a secure O(c?) PoS chain exists. . . you know where this is going. If UTj
works, then we're talking millions of TPS (~10°¢ to 107) at k = 3000 B/s.

Share security, and capacity follows.

1238ee https://www.digitalocean.com/pricing/droplets (also via web.archive.org however client-side js breaks the
page shortly after loading). Note: inbound data is free.

131 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20250126231118/https://docs.digitalocean.com/platform/billing/bandwidth/
https://www.digitalocean.com/pricing/droplets
https://web.archive.org/web/20250126134024/https://www.digitalocean.com/pricing/droplets

8.2 Addressing the Stronger Trilemma

8.2 Addressing the Stronger Trilemma

In Section 1.1, T took issue with the scalability criterion and suggested a stronger version: O(n)
transactions in O(1) time.

How can we reasonably estimate what an O(n) transaction load looks like? There are approximately
8 billion people on Earth. If everyone one of them made 1000 transactions per day, the network
would require 8 x 10'? transactions per day, which is about 93 million (~10%) TPS. Clearly, this is
greater than any of the TPS values we calculated above.

For UT; goT to reach 108 TPS, we’d need a large k > 20000 and maybe a longer block period.

UTs not, by comparison, is already around the XTPS; ~ 5 x 10° mark with our standard chain
parameters. If By = 1/60, then X TPSs &~ 107; however, AS would be around 5x larger. That is a
substantial increase in bandwidth requirements, and pushing to 10® TPS is not really practical
within O(c¢) constraints.

Alternatively, we can look to tiling for extra capacity in the first level of nesting. We found in
Section 6.5 that tree-tilings can be constructed to be O(n) secure, so all that remains to show is
that UTy is O(n) scalable and decentralized at the same time. The big problem for arbitrarily
large tilings is block availability. Smaller tilings with acceptable AS are still useful, though.

UTyriynor reaches 108 TPS around 15 layers (d < 15) and would have about 107 chains. If block
availability in tilings remains an unsolved problem, then this is clearly not practical.

On the other hand, UTworpnoT, with standard chain parameters, reaches XTPSy & 10® at around 8
layers; a ~100x increase in the number of total chains (and AS). This is much closer to reasonable
parameters.

Is it so close that, perhaps, an otherwise unacceptable technique could be used to ensure the
availability of all simplex-tile blocks? An example of such a technique might be some kind of
division of responsibility between miners so that they only need to ensure blocks from tiles above
and below the given tile are available (in addition to blocks from that tile, of course). For all tiles
other than the root tile, this would dramatically reduce AS to about 2-¢x what it would otherwise
be, where d is the depth of the tile.

So, if the problem of block availability in a tiling can be and is solved, we are clearly O(n) scalable
and decentralized with any tiling. However, since it is unsolved, UTxs is not currently O(n) scalable
and decentralized, but could potentially reach that in the future.

Finally, what about UT3 and UTy3?

A conservative estimate of UT3’s TPS with standard chain parameters is around 107. Given the
sensitivity of this number to small changes in chain parameters, we could easily tweak things a
little to reach 10% TPS.

UTys, instead of tweaking parameters, could increase capacity over UT3 by 4x via tiling to just
brush these kinds of numbers with only 3 layers (the tiling shown in Figure 35¢). In turn, AS also
increases by 4x what it would be for a maximal simplex with the same chain parameters.

Arguably, if the UT3 chain parameters are practical, then this is practical. Therefore, with carefully
chosen parameters, UTys is secure, O(n) scalable, and decentralized at the same time.

8.3 Terminus Est
What a ride, ey? Let’s recap.

We started from a simple idea: that a blockchain confirming the history of another blockchain was
worth something. From there, we constructed Proof of Reflection — a new consensus primitive that
facilitates the summation of chain-work from different chains. We then found ways to convert work
between chains that is compatible with our goals and context, allowing otherwise incompatible
consensus methods to cooperate. Figure 38 shows how it is the missing idea that addresses the core
conflict of the Blockchain Trilemma.

132 of 155

[git] = 43830880 = 2025-07-22

8 CONCLUSIONS

Mutual PoR plus the conversion of work allowed us to construct the Simpler and UT; — a highly
interconnected network of blockchains with O(c?) capacity. By utilizing one-way PoR in combination
with existing blockchain designs, we added dapp-chains to construct UTy and bump the overall
capacity to O(c?). Based on the observation that some current PoS networks claim to be O(c?)
scalable, we used these designs as dapp-chains instead to construct UT3 and reach O(c*) capacity.

We then explored the practical side, and found that we needed the Axiom of Availability to
ensure reflections between simplex-chains only included available simplex-blocks. As we looked
into the specifics of how we would structure blocks and PoRs, we found several optimizations that
significantly reduced both the computational and bandwidth requirements for network participants.
We also discussed how to support stateless clients and fraud proofs — tools we would need later. This
ultimately led us to construct the PoR graph and the Axiom of Maximal Reflection. We adapted
NIPoPoWs into NIPoPoWRs, which work for the PoR graph instead of a standalone blockchain.
We then integrated block-DAGs to prevent minority attackers from performing effective DoS or
censorship attacks, and developed NIPoPPoWs which work with block-DAGs. We realized that we
now had the conditions to regquire miners to build on the latest block(s) without any appreciable
downside, and enshrined this as the Axiom of Unified Ancestry. Throughout this, we found that
these new constructions lacked multiple weaknesses of traditional chains, even though solving
those problems was not a goal. Selfish Mining and PoS long range attacks are two such examples.
Somewhat surprisingly, we also found that the confirmation rate of a simplex is inversely proportional
to ¢! Not only is this faster than any existing network, but the dynamics of block production cause
miner resonance, which acts to synchronize miners and reduces the variance in block production
times in PoW simplexes. Using our newfound knowledge, we tested the Confirmation Equivalence
Congjecture and found it consistent with reality. Taking all of this, we devised a fast, succinct, secure,
and reliable method for intra-simplex cross-chain transactions. As icing on the cake, we developed
expedited transactions that not only allow for near-zero time-to-first-confirmation, but also allows a
chain to dynamically expand its capacity by up to ~5x to heavily mitigate the negative effects of
congestion. And with that, we completed the design for UT; and the Simplex.

We analyzed this design more formally, and found that UT; was indeed an O(c?) construction. We
also saw how every relevant aspect of UT; was within O(c) constraints, except for AS, which was
O(c?). However, when we checked the actual numbers, we found AS was within reasonable limits
and is easily accommodated by today’s standards. At this point we were already out-scaling any
existing blockchain design, but that didn’t stop us confirming the scalability of UTs and UTj3, and
calculating some girthy capacity estimates as a result.

After all this, we reconsidered how simplex-chains might be organized and discovered Recursive
PoRs and Simplex Tilings, with a particular focus on tree-tilings. We developed a security model
for tree-tilings that was secure against an attacker with up to 49.5% of the network hash rate.
Were it not for the bandwidth requirements on miners imposed by the Axiom of Availability, this
would be the ultimate scaling construction as it is practically unbounded — we could always add
more tiles, growing the capacity exponentially with the depth of the tiling. We don’t know if that
availability problem is solvable, but even if it isn’t, we saw how smaller tilings are still useful.

Penultimately, we evaluated UT; against the Trilemma and found that it satisfied all three criteria
as originally put. But that was not enough, so we examined each scaling configuration of UT
against a stronger trilemma. Although boasting impressive capacity (see Table 13, Table 14), most
configurations fell short of what we set as the standard for O(n) scalability: 100 million TPS. But!
We did find one configuration that definitely worked: UTxys.

With that, I think it’s finally time to make the claim.

The Blockchain Trilemma is solved. B

124 1f the block availability problem can be solved for tilings, then all tilings are O(n) scalable since their capacity

is unbounded. If it cannot, tilings are still useful but do not provide O(n) scaling on their own.

125 UTys is decentralized if the maximum tiling depth is kept low. As we found earlier, UTx3 with d < 3 provided
a tolerable AS, and lead to a network-wide TPS of around 108, even though we assumed dapp-chain headers to be
10x worse than the theoretical maximum (dapp-chain headers would be ~1000 bytes). This specific case is what
“Yes” refers to.

133 of 155

[git] = 43830880 = 2025-07-22

8.3 Terminus Est

Table 12: Table evaluating UT against trilemma criteria. TPS ranges are the minimum and
maximum values for 3000 < k& < 20000 B/s across all UT variants. Tilings are not limited in d.

UT Config. Decentralized? O(n) Secure? O(n) Scalable?

uT, Yes Yes Unlikely (Max. TPS: ~ 1K - 400K)
UT, Yes Yes Possibly ~ (Max. TPS: ~ 60K - 2B)
UT; Yes Yes Probably (Max. TPS: ~ 10M - 6T)
UTy; Maybe'?* Yes Probably (Max. TPS: ~ 50M - 10*®)
UTxo Maybe Yes Yes (Max. TPS: ~ 30B - 10%!)
UTxs Yes'?? Yes Yes (Max. TPS: ~ 1012 - 10%)

Table 13: UT capacity vs. Earth with standard chain parameters and heavy dapp-chains headers.
Parameters: k = 3000 B/s; By = /15 Hz; B), = 112 B; Dy = /15 Hz; D)}, = 560 B. Per capita here
assumes a population of 10 billion people. In all cases, the UT variant is +HO. Tilings have d = 3.
AS: BW req. for miners; As: sync BW req. for full nodes (PoR graph + 1 simplex-chain).

UT Config. Y TPS Tx/day/capita As (kB/s) (TB/mo) AS (kB/s) (TB/mo)
UT, 4,219 0.036 10.8 0.028 1,097 2.884
UT, 339,007 2.929 10.8 0.028 1,097 2.884
UT; 27,241,610 235.368 10.8 0.028 1,097 2.884
UTy; (d=3) 16,875 0.146 43.1 0.113 4,386 11.535
UTyo (d=3) 1,356,027 11.716 431 0.113 4,386 11535
UTys (d=3) 108,966,438 941.470 43.1 0.113 4,386 11.535

Table 14: UT capacity vs. Earth, as in Table 13 with k& = 6000 B/s (3.5x Bitcoin’s); Dy = 1024 B.

UT Config. Y TPS Tx/day/capita As (kB/s) (TB/mo) AS (kB/s) (TB/mo)
UTy 16,875 0.146 22.1 0.058 4,373 11.500
UT, 1,483,154 12.814 22.1 0.058 4,373 11.500
UTs 130,355,358 1,126.270 22.1 0.058 4,373 11.500
UTy (d=3) 67,500 0.583 88.5 0.233 17,492 45.999
UTxe (d=3) 5,932,617 51.258 88.5 0.233 17,492 45.999
UTgs (d =3) 521,421,432 4,505.081 88.5 0.233 17,492 45.999

[Stay decentralized}%[Use many chains and small blocks]

/

[Safely increase capacity}

Figure 38: A solution to the core conflict of the Trilemma.

No Conflict!

“<------->

[Use Proof of Reﬂection}

134 of 155

[git] = 43830880 = 2025-07-22

9 CRITICISMS OF UT

9 Criticisms of UT

This section documents the major reasons that UT might not work — or, equivalently, the most
valuable contributions. I have also provided some commentary on the criticisms.

There are no known decisive criticisms of UT;.

9.1 Open Problems
9.1.1 Dapp-chains & PoS
Main content: Section 3.4.

Criticism: Dapp-chains are based on the assumption that a secure PoS method exists when
adapted for one-way PoR. No specific PoS method is provided and it’s not clear that PoS + PoR
actually works without a clear design for such a system. The other claims about dapp-chains and
UTj; scaling and above is contingent on a suitable PoS method being found or created. PoS is
insecure when used in isolation and it isn’t clear that PoS can be secure, even with the help of PoR
and a purely PoW simplex. Even if a suitable method of PoS is found, PoS + PoR is inefficient
compared to PoW 4+ PoR and some capacity estimates are therefore overly optimistic.

Commentary: This criticism is correct if PoS is never secure, although it is not the complete
picture. There are some cases that work — PoA dapp-chains and non-financial dapps, for example.
However, the goal is a universal method that works for any dapp-chain and allows for secure
cross-chain transactions between the simplex and dapp-chains. And while we don’t have an
otherwise-working PoS + PoR implementation, we also have no reason to believe that conversion is
impossible or that PoR is incompatible with PoS.

If PoS + PoR is secure in a PoW context, there is no other fundamental barrier to UTs or UTsg.
Thus this criticism is possibly refuted if and only if PoS + PoR to PoW is secure.

9.1.2 UTy; Block Availability & O(c?logn) Bandwidth
Main content: Section 6.4.3 and Section 6.6.3.

Criticism: Without a solution to block availability, UTx doesn’t work for d 2 4. It works to
expand capacity by up an order of magnitude but not beyond. Even that might not work because
the security model is untested and there are no comparable PoW-based real-world examples to
examine. O(c?logn) bandwidth for validating nodes is too high. O(nc™%) bandwidth for root-tile
miners is too high.

Commentary: While UTy, is useful, it is not a complete solution to O(n) scaling. That it is useful
hints that there might be more and better PoR-based geometries to discover. If a satisfactory
solution to block availability can be found then it will also solve the bandwidth problem and the
bottleneck will be the gradient of work required as distance from the core increases (dyax € [10, 30]).

9.2 Mitigated Risks
9.2.1 A Key Point for UT; Is Flawed

Risk: Several key components are required for UT; to work. There are no known decisive criticisms
but maybe you can find one? PoR and Conversion of Work (Section 2), Simplex Security (Sec-
tion 4.10.1), and Intra-Simplex Cross-Chain Transactions (Section 4.11) are three such components.

9.2.2 UT; O(c?) Bandwidth
Main content: Section 4.1.

Risk: Whether AS is tolerable depends on k (block size) and is mitigated with a suitable k (see
Table 13, Table 14). A k of 3000 B/s has plenty of breathing room, and 20,000 B/s is on the high
end of what could possibly work. For comparison, Bitcoin has k & 1700 B/s.

135 of 155

[git] = 43830880 = 2025-07-22

Notation € Nomenclature

Notation

Table 15: Notation defined in this document.

Term Definition

Unit

Abstract representation of per-node computational resources.

Abstract representation of network size.

Proportion of the network’s hash-rate controlled by honest nodes.
Proportion of the network’s hash-rate controlled by the attacker.

» The block reward of chain L/R.
Some amount of work.
Xrorp Exchange rate between L-coins and R-coins.

c

n

p

q

L4, Ry The difficulty of chain L/R.
L., R

w

C’ Confirmation rate.

g Hash digest size.

k; A generalization of block size: the average per-chain raw
throughput at the i*" level of nesting.

k Average per-chain raw throughput across nesting levels. k is used
to simplify reasoning and equations, esp. when all k; are equal.

T; Network throughput at the i*" level of nesting.

N; Number of chains at the i*" level of nesting.

Niiles Number of tiles in a simplex-tiling.

B¢, Ly Base-chain block frequency.

By, Base-chain header size.

Dy Dapp-chain block frequency.

Dy, Dapp-chain header size.

10} Propagation delay across the network

Y. TPS;, Network-wide transactions per second at the i*" level of nesting

(given no additional levels).

As Minimum network bandwidth for a full node to remain in sync
with a single simplex-chain (whilst also validating PoRs).
Ar Minimum network bandwidth for a full node to fully reconstruct

the PoR graph.

AS Minimum network bandwidth for a mining (or fully validating)
node to ensure block availability over all reflected simplex-chains.

DAAyN The number of blocks over which the DAA operates.

hashes/block
coins/block
hashes
L-coins/R-coin
Hz

bytes
bytes/second

bytes/second

bytes/second
chains

tiles

Hz

bytes

Hz

bytes
seconds

tx/s

bytes/second
bytes/second
bytes/second

blocks

136 of 155

[git] = 43830880 = 2025-07-22

Notation € Nomenclature

Nomenclature

Table 16: Nomenclature defined in this document.

Term Definition Reference
UuT; The UT scaling configuration with ¢ levels of nesting. Section 3
uT, UT with base-level chains only — O(c?) scalability. Section 3.2
UTs, UT with nested dapp-chains — O(c?) scalability. Section 3.4
UT; UT with nested dapp-dapp-chains — O(c*) scalability. Section 3.4
UTy; Tiling of UT; — O(n) scalability. Section 6
+PoRs Protocol variant: explicit proofs. Section 4.2
+PoRTs Protocol variant: explicit proofs 4+ T. Section B.1.1
+HOPoRs Protocol variant: explicit proofs + header omission. Section 4.4
+HOPoRTs Protocol variant: explicit proofs + header omission + T. Section B.1.1
+0OP Protocol variant: omitted proofs. Section 4.2
+OPT Protocol variant: omitted proofs + T. Section 4.4
+HO Protocol variant: omitted proofs + header omission. Section 4.4
+HOT Protocol variant: omitted proofs 4+ header omission + T. Section 4.4
137 of 155

[git] = 43830880 = 2025-07-22

Glossary

Glossary

Axiom Network azioms are foundational rules expressed as a principle and predicate. Consensus-
forming nodes must adhere to them. See definitions: Availability, Maximal Reflection, Unified
Ancestry. 49

Base-chain A chain that has no parent-chains; i.e., is at the base nesting level. 105

Confirmation Equivalence Conjecture (CEC) The conjecture that, when using PoR and
appropriately converting work, confirmations of reflecting chains can be treated as equivalent
to local confirmations of the same weight. See Equation 33. 79

Convertible Context The boundary of a group of values that are mutually convertible. Within
a convertible context, all values must be of the same scale or have known exact scaling factors.
24

Dapp-chain An application-specific child-chain that is secured via the parent-chain. Dapp-chains
may have architecturally distinct state- and transaction-schemes (distinct from those schemes
used in the simplex, and other dapp-chains). 40

Difficulty Adjustment Algorithm (DAA) An algorithm which updates its chain’s difficulty
as valid blocks are produced. The output of a DAA is context laden — units take on additional
context. 23

Explicit Proofs (+PoRs) The UT protocol variant wherein miners/validators explicitly record
both reflected headers and the single missing merkle branch required to prove reflection. 50

Foundational Consensus Mechanisms Those mechanisms, like PoW and PoS, which can work
in some standalone fashion; PoR is a cross-chain extension to such mechanisms. 34

Fraud Proof Cryptographic evidence that a transaction, block, or state transition was incorrect.
54

Freedom of Incentivization The property whereby child-chains have free choice of incentive-
system (i.e., the nature and dynamics of their root token, or lack thereof). 44

Freedom of Protocol The property whereby child-chains have free choice of protocol (including
consensus mechanism, scripting, accounting methods, block structures, etc). 44

Hash Truncation (+T) The UT protocol variant wherein miners/validators refer to reflected
headers using only the least significant half of the hash. This effectively halves the hash size
in throughput calculations for +OP and +HO variants. 53

Header Omission (+HO) The UT protocol variant wherein miners/validators explicitly record
only the hashes of reflected headers. A requirement is that block producers must eagerly
download the headers of all simplex-chains and deterministically recalculate the relevant
Proofs of Reflection. 51

Header-transactions Dapp-chain headers that are encoded as simplex-level transactions; i.e.,
they are processed by a simplex-chain as a transaction, but they also function as the header
for a dapp-chain block. 40

Main Chain In a block-DAG, the main chain is the continuous chain of primary parents from
the best block to the genesis block. Blocks that are part of the main chain are on-main, and
blocks that are not are off-main. 68

Maximal Simplex A simplex with the maximum TPS under given O(c¢) constraints. 106

Miner Resonance The effect whereby block production wvariance is reduced when miners can
(and do) collectively change which chain they are currently mining faster than blocks are
produced for those chains, due to changes in network-wide incentivization. 78

Omitted Proofs (+OP) The UT protocol variant wherein miners/validators explicitly transmit
only the reflected header component of PoRs, such that necessary proofs of reflection themselves
are deterministically recalculable. 50

138 of 155

[git] = 43830880 = 2025-07-22

Glossary

Projection A projection of a chain is its headers-only version that has been recorded and evaluated
by a different chain. For example, BT C Relay is a smart contract by which Ethereum previously
hosted a projection of Bitcoin. The act of one chain creating and maintaining the projection
of another is called imaging. 9

Proof of Reflection (PoR) The consensus technique whereby a blockchain becomes more difficult
to attack by including work done by reflecting blockchains in its fork rule. 15

Reward Adjustment Algorithm (RAA) An algorithm which updates the block reward of each
chain in a network of chains that share a root token. Similar to a DAA, the output of an
RAA is context laden. 28

Root Token (RT) aka Coin. The typically sole network-level token required by blockchain
protocols. e.g., Bitcoin has BTC, Ethereum has ETH, Polkadot has DOT, Cardano has ADA,
Amaroo has ROO, etc. 20

Scaling Factor Also: “Scale x”. For a given k, it is the factor by which TPS increases with an
additional nesting level. In effect, it allows for comparison of the efficacy of scaling schemes
when k is fixed. For some designs, the Scaling Factor can change between nesting levels. 143

Simplex The single coherent structure that emerges from a collection of blockchains that mutually
reflect each other. 38

Simplex Tiling An interconnected graph of mutually reflecting simplex-tiles. 115

Simplex-chain A blockchain that is part of a simplex; it mutually reflects all other simplex-chains
in that simplex. 38

Simplex-Tile A simplex which partitions its capacity for mutual reflections such that each simplex-
chain mutually reflects all other simplex-chains in that tile, and all other simplex-chains in
neighboring (or adjacent) tiles. 115

139 of 155

[git] = 43830880 = 2025-07-22

https://github.com/ethereum/btcrelay

LIST OF FIGURES

List of Figures

1

N O U W N

oo

10

11

12
13

14

15
16

17

18
19
20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
38
39
41
42
43
44
45

A “cloud” diagram of the core conflict of the Blockchain Trilemma. A — B can be

read “A so that B”; and A < B: “Arequires B”. 5
A cloud showing the scaling conflict of merged mining. 6
(Hypothetical) A projection of Bitcoin in Ethereum via an SC and transactions. . 10
Step 1. Chain R images Chain L; thus Chain R hosts a projection of Chain L. 11
Step 2. Chain L and Chain R contain a projection of each other’s headers-only chain. 12
Incrementally constructing a proof of reflection (PoR). 12
Step 3. Chain L includes proofs of reflection (PoRs) along with headers. Proofs of

Reflection allow Chain L to know which of its own blocks are known to Chain R. 13
Step 5. Proof of Reflection between two UT Chains, Chain L and Chain R 17

How does a difficulty adjustment algorithm interact with and define the convertible
context of various properties of its chain? This figure shows flows of information and
context, and where conversion is possible between these properties. 25
How are the convertible contexts of two different networks related? This figure
shows the expanded convertible context of two interacting blockchains, enabled by
an exchange rate, Xp_,r. L 25
How does implicit context change when considering networks of a single root token?
This figure shows the convertible context for networks of a single root token and

how, in this specific context, Ly and Ry have meaning when converting work. . . 29
Simplexes of increasing capacity. L oo Lo 38
The block creation process (simplified) for PoW chains and some variants of PoS

chains. Lo e 43
A flow chart to decide which proof system to use for a dapp-chain, assuming a secure

PoS method is available. 43
Chain-segments showing an unavailable R block that was reflected anyway. . . . 48
Possible upgrade paths between UT variants, starting at UT | pors in the top left —

the most conservative variant. Solid arrows show paths of increasing capacity. . . 53
A simulated PoR graph of a 9-simplex over ~10 block periods. Approximately 900

reflections are shown. L oL Lo 50
Maximally reflective PoR graph segments can be described using ~O(¢) information. 57
The p-superchains used by NIPoPoWs. 61
The full interlink structure used by NIPoPoWs for a chain segment. 61
The blocks of a traditional chain that comprise a N[PoPoW. 62
Some examples of simple block-dag segments. L. 67
Example: sorting a moderately complex block-DAG. 69
An attempted empty-block DoS attack on a block-DAG. 70
A simple block subgraph. 71
A complex block subgraph and corresponding execution order. 73
A comparison of the measured probability of a successful doublespend against a

traditional blockchain compared with Rosenfeld’s analytical solution. 84
The conditions used to find R blocks valid for cross-chain transaction processing. . 91
Flow chart of how the segmentation of state works in UT to achieve O(c?) capacity. 93
Phase transitions of a PoR graph when fraud occurs. 94
Trivial simplex tilings L 116
The only unbounded tilingat v =2.o oL 117
Constructing a binary tree-tiling: the first 3 iterations. 117
A diagram of chain-segments demonstrating the simplest case of recursive PoR. . 119
A solution to the core conflict of the Trilemma. 134
Graphs of f(z) = 3 for z € [102,10%]. . . . oo 146
Early simulation results o 152
Simulation iteration: accounting for draft reflected work 153
Simulation iteration: randomizing hash-rates 153
Simulation iteration: the “bonus block” 0oL 154
Simulation iteration: increasing DAAN o 155

140 of 155

[git] = 43830880 = 2025-07-22

LIST OF TABLES

List of Tables

1

S U W N

11

12

13
14

15
16
17

18
19

20
21
22
23
24
25
26
27
28

(Hypothetical) Data and events as Ethereum images Bitcoin. 10
Step 2. Both Chain L and Chain R host a projection of each other. 11
Step 3. Chain L records PoRs via Chain R. 13
Table of parameters necessary to generate the main CEC experimental results. . . 82
Functions that will be simultaneously graphed to test the CEC. 83

A comparison of the maximum theoretical transaction throughput (transactions per
second; TPS) with parameters k, By, By, for O(c), Sharded O(c?) and the different
UT op scaling configurations. Note that the Sharded O(c?) column is the theoretical
optimal limit for sharded systems where all headers are recorded in the base-chain. 110
Chain-capacity and bandwidth requirements for UT op: Ny, Na, N3, AS, Ar, and

C’ for various parameters. oo e e e e e e e e e e e e 113
Comparison of UT variants’ capacities with parameters: k = 3000 B/s; By = 1/15;
Bj, = 84 bytes; 250 byte transactions. oL 114
Comparison of UT variants’ capacities; as in Table 8 with & = 20000 B/s. 114
Comparison of UT variants’ network and storage requirements with parameters:
k = 3000 B/s; By = 1/15; Bj, = 84 bytes; 250 byte transactions. 114
Comparison of UT variants’ network and storage requirements; as in Table 10 with
kE=20000 B/s. . . . oo 114

Table evaluating UT against trilemma criteria. TPS ranges are the minimum and
maximum values for 3000 < k& < 20000 B/s across all UT variants. Tilings are not
limited in d. e e e e e e e e 134
UT capacity vs. Earth with standard chain parameters and heavy dapp-chains headers.134
UT capacity vs. Earth, as in Table 13 with & = 6000 B/s (3.5x Bitcoin’s); D), = 1024

B e 134
Notation defined in this document. 136
Nomenclature defined in this document. 137

A comparison of quantitative scaling properties between UT and various networks
given k = 3000 bytes/s. Transaction size is set to 250 bytes, D; = By, and Dy, = B;,.143
Similar to the previous table, but with & = 20 kB/s instead of 3 kB/s. 144
A comparison of computational requirements (approximated by k) for 1 million TPS
between UT and various other networks. UTs’s equivalent TPS is also provided

(given the same parameters of k, By and Bp). oL 144
Table evaluating various other networks against trilemma criteria. 145
UT pors capacity given different parameters. 147
UT, ports capacity given different parameters. 147
UT,op capacity given different parameters. 148
UT,opr capacity given different parameters. 148
UT . po capacity given different parameters. 149
UT ot capacity given different parameters. 149
UT nopors capacity given different parameters. 150
UTnoports capacity given different parameters. 150
141 of 155

[git] = 43830880 = 2025-07-22

KEY REFERENCES

Key References

N et W

Bitcoin: A Peer-to-Peer Electronic Cash System, Satoshi Nakamoto, 2008.
Analysis of hashrate-based double-spending, Meni Rosenfeld, 2012.
Inclusive Block Chain Protocols, Lewenberg, Sompolinsky, Zohar, 2015.
Ethereum Wiki: On sharding blockchains FAQs, Vitalik Buterin, 2017.
Non-Interactive Proofs of Proof-of-Work, Kiayias, Miller, and Zindros, 2018.
Critical Fallibilism Course, Elliot Temple, 2020.

Multi-Factor Decision Making Math, Elliot Temple, 2021.

Supplementary References

17.
18.
19.
20.
21.
22.
23.

24.
25.
26.
27.

Secure High-Rate Transaction Processing in Bitcoin, Sompolinsky, Zohar, 2013.

An Economic Analysis of Difficulty Adjustment Algorithms in Proof-of-Work Blockchain
Systems, Noda, Okumura, Hashimoto, 2020.

Segregated Witness, Bitcoin Wiki, 2017 (edit 2021).

BIP-141, Lombrozo, Lau, Wuille, 2015.

Polkadot Whitepaper, Gavin Wood, 2016.

GRANDPA: a Byzantine Finality Gadget, Stewart, Kokoris-Kogia, 2020.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol, Kiayias, Russell, David,
Oliynykov, 2019.

Ethereum Yellow Paper / Petersburg Version 41¢1837, Gavin Wood, 2021.

Majority is not Enough: Bitcoin Mining is Vulnerable , Eyal, Sirer, 2013.

. Ethereum - BTCRelay, Ethereum Contributors, 2017.

. Luke Jr’s attack on Coiledcoin, Luke-Jr, 2012.

. The Defence of PoS, Zack Hess, 2021.

. Proof of Stake, Zack Hess, 2021.

. Stateless Full Node, Zack Hess, 2021.

. The Stateless Client Concept, Vitalik Buterin, 2017.

. Making UTXO Set Growth Irrelevant With Low-Latency Delayed TXO Commitments,

Peter Todd, 2016.

Merkle Mountain Range, Peter Todd, 2018.

Merklix tree, deadalnix, 2016.

T.E.T.O Draft, Paul Firth, 2016.

DagCoin Draft, Demian Lerner, 2015.

IOTA BitcoinTalk Thread, Come-From-Beyond, 2015.

Instant Transactions with a stream of work — Quanta, Max Kaye, 2015.

For Public Consideration: [Marketcoin | MKC] A P2P Trustless Cryptocoin Exchange,
Max Kaye, 2013.

[RFC] Marketcoin - A web of distributed markets with a common unit, Max Kaye, 2014.
Coppr: Chainheaders, Max Kaye, 2014.

What are NIPoPoWs?, nipopows.com, 2019.

OpenEthereum, Parity, 2022.

142 of 155

[git] = 43830880 = 2025-07-22

https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20220209100515/https://cloudflare-ipfs.com/ipfs/QmNUWmY94QUievK8ptoxsPyAQUsKvx1cjRyCgPcfmysAVv
https://web.archive.org/web/20210426004857/https://cloudflare-ipfs.com/ipfs/QmPb3oZBwyg1EJCR2CivnjTKWkf9UxhVbU8JByv6SW1pXy
https://web.archive.org/web/20220606205028/https://eth.wiki/sharding/Sharding-FAQs
https://web.archive.org/web/20190123153947/https://eprint.iacr.org/2017/963.pdf
https://curi.gumroad.com/l/mhtbA
https://criticalfallibilism.com/multi-factor-decision-making-math
https://web.archive.org/web/20220308084727/https://cloudflare-ipfs.com/ipfs/QmTDz4WuAXi2rV7Ei3pHHKTFCYGPeDbDoAkmypkHdJnnKe
https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8
https://web.archive.org/web/20211018043918/https://cloudflare-ipfs.com/ipfs/Qmd8BE6xYCH58LNipE1zZ7BCftemN8hQWnfZJSJYq5XUE8
https://web.archive.org/web/20240926154239/https://en.bitcoin.it/wiki/Segregated_Witness
https://web.archive.org/web/20240423183945/https://en.bitcoin.it/wiki/BIP_0141
https://web.archive.org/web/20240927041732/https://gateway.pinata.cloud/ipfs/QmbH4TzUB7izvuwidG598DNnk3Nmd1aWEyf8KLxeAkrvkK
https://github.com/w3f/consensus/blob/master/pdf/grandpa.pdf
https://web.archive.org/web/20240927042139/https://gateway.pinata.cloud/ipfs/QmWCAHyi35SeXH2E4e8jRVk7yNse2x6D14uPfABnhagbvN
https://web.archive.org/web/20240927042236/https://gateway.pinata.cloud/ipfs/QmcdwaEqKjsASs1sZqxBNPw5vmypE5YL61zSvWdGoX7wtC
https://web.archive.org/web/20240927042356/https://gateway.pinata.cloud/ipfs/QmNukb1L8BhEsiCbrmnkEJWAvUjhBHidinKMZKfCaLG6ep
https://github.com/ethereum/btcrelay
https://web.archive.org/web/20141006215827/https://bitcointalk.org/index.php?topic=56675.msg678006
https://web.archive.org/web/20220309063254/https://github.com/zack-bitcoin/amoveo-docs/blob/master/other_blockchains/the_defence_of_pos.md
https://web.archive.org/web/20220309063128/https://github.com/zack-bitcoin/amoveo-docs/blob/master/other_blockchains/proof_of_stake.md
https://web.archive.org/web/20210523201110/https://github.com/zack-bitcoin/amoveo-docs/blob/master/design/stateless_full_node.md
https://web.archive.org/web/20210602053116/https://ethresear.ch/t/the-stateless-client-concept/172
https://web.archive.org/web/20210224050038/https://petertodd.org/2016/delayed-txo-commitments
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://web.archive.org/web/20160928121722/http://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-steroid
https://github.com/wildbunny/docs/blob/master/T.E.T.O-draft.pdf
https://web.archive.org/web/20240825150407/https://bitslog.com/wp-content/uploads/2015/09/dagcoin-v41.pdf
https://web.archive.org/web/20250126094356/https://bitcointalk.org/index.php?topic=1216479.0
https://web.archive.org/web/20240927041949/https://bitcointalk.org/index.php?topic=1057342
https://web.archive.org/web/20231115114704/https://bitcointalk.org/index.php?topic=198032.0
https://web.archive.org/web/20240526020706/https://bitcointalk.org/index.php?topic=598784.0
https://github.com/XertroV/coppr/blob/master/chainheaders.py
https://web.archive.org/web/20210520174729/https://nipopows.com/
https://github.com/openethereum/openethereum

Term

A COMPARISON: “THE BIG 4”

A Comparison: “The Big 4”

The following comparisons (Table 17, Table 18, and Table 19) are intended to be an apples to
apples comparison between UT variants and “The Big 4”: Bitcoin, Cardano, Eth2, and Polkadot.
Cardano, as a cutting-edge network, is an exception here: the Cardano/IOHK teams have not
been pursuing Layer 1 scalability solutions and are focusing instead on a Layer 2 solution: Hydra
via EUTXOs. Ethereum is also an exception of sorts: these comparisons use the original Eth2
sharding roadmap as an example of a sharded Layer 1, whereas the Ethereum network itself is now
pursuing a rollup-centric scaling strategy via their beacon chain. I mention this particularly because
the nature of an apples to apples comparison casts Cardano and Ethereum in a light that some
might consider to be misleading. However, these comparisons deliberately do not consider Layer 2
scalability solutions for one very simple reason: all networks can implement them in some fashion.
It is not a fair (or accurate) comparison of blockchain architecture if Layer 2 scaling solutions are
considered for some networks and not for others.

In addition to those four, a network named Opt.Shard (for Optimal Sharding) is included in these
comparisons. This is a theoretical network which uses the best parameters possible among UT
configurations. No real-world sharded network has come close to this level of performance, and it is
incompatible with PoS.

Scaling Factor: Also: “Scale x”. For a given k, it is the factor by which TPS increases
with an additional nesting level. In effect, it allows for comparison of the efficacy of scaling
schemes when k is fixed. For some designs, the Scaling Factor can change between nesting
levels.

Table 17: A comparison of quantitative scaling properties between UT and various networks given
k = 3000 bytes/s. Transaction size is set to 250 bytes, Dy = By, and Dy = By,. Note: ‘0o’ here
does not literally mean infinite; however, we cannot calculate concrete values without specifying
parameters arbitrarily which are otherwise unbounded.

k, By, By, Network E. B, (B) E. Dy (B) Scale x Ny ¥ TPS
3000, 1/600,80 Bitcoin 80 - 1 - 12
3000, 1/20,1070 Cardano 1070 - 1 - 12
3000,1.58,144 Solana 144 - 1 - 12
3000,1/15,84 UTpors 99 - 1 ; 1,363
3000, 1/15, 84 UTl+HOPoRTs 56 - 1 - 2,319
3000, 1/15, 84 UT4 1 nmoT 16 - 1 - 8,437
3000, 1/6, 288 Polkadot 288 819 21 21 263
3000, 1/12,200 Eth2 200 312 115 115 1,384
3000, /15, 66 Opt.Shard 66 66 681 681 8,181
3000,1/15,84 UTapors 99 66 681 7T.AT9 929.750
3000, /15,84 UT91 HOPORTs 56 66 681 131,797 1,581,574
3000, /15,84 UT2noT 16 66 681 479,403 5,752,840
3000, /15,84 UTxgerHoT 16 66 681 00 00
143 of 155

[git] = 43830880 = 2025-07-22

Table 18: Similar to the previous table, but with & = 20 kB/s instead of 3 kB/s.

k, By, B, Network E. B, (B) E.Dj, (B) Scale x A ¥ TPS
20000, /600,80 Bitcoin 80 - 1 - 80
20000, /20,1070 Cardano 1070 . 1 . 80
20000,1.58,144 Solana 144 - 1 - 80
20000, 1/15,84 UT1 ports 125 - 1 - 48,009
20000,1/15,84 UT1 HOPoRTs 77 - 1 - 77,078
20000, 1/15,84 UTi por 16 - 1 - 375,000
20000, /6,288 Polkadot 288 819 146 146 11,721
20000, /12,200 Eth2 200 312 769 769 61,538
20000,1/15,66 Opt.Shard 66 66 4,545 4545 363,636
20000, 1/15,84 UTa pors 125 66 4,545 2,727,810 2.18 x 10°
20000, 1/15,84 UTs HOPoRTs 7 66 4,545 4,379,483 3.50 x 10°
20000,1/15,84 UTs por 16 66 4,545 21,306,818 1.70 x 10°
20000,1/15,84 UTyxoynor 16 66 4,545 00 00

Table 19: A comparison of computational requirements (approximated by k) for 1 million TPS
between UT and various other networks. UTs’s equivalent TPS is also provided (given the same
parameters of k, By and By,).

k, By, B, Network N, Y. TPS Equiv. UTo opt ¥ TPS
2.5 x 108,1/600,80 Bitcoin - 1,000,000 1.37 x 1024
2.5 x 108,1/20,1070 Cardano - 1,000,000 5.80 x 10'8
2.5 x 108,1.58,144 Solana - 1,000,000 4.99 x 107
93680, 1/15, 84 UT 14 PoRTs - 1,000,011 4.25 x 1010
74136, 1/15, 84 UT1 4 HOPoRTs - 1,000,049 2.10 x 100
32660, 1/15, 84 UTi4nor - 999,999 1.80 x 10°
184800, 1/6, 288 Polkadot 1,353 1,000,763 3.47 x 10°
244200, 1/12, 200 Eth2 1,024 1,000,243 5.03 x 1019
33166, 1/15, 66 Opt.Shard 7,537 1,000,000 3.28 x 10?
3074,1/15,84 UTo. PoRTs 81,348 1,000,264 1,500,397
2526,1/15, 84 UTo moporTs 99,046 1,000,761 832,520
1674,1/15, 84 UT2noT 149,318 999,999 242,424
144 of 155

[git] = 43830880 = 2025-07-22

A COMPARISON: “THE BIG 4”

Table 20: Table evaluating various other networks against trilemma criteria.

Network Decentralized? O(n) Secure? O(n) Scalable?

Bitcoin Yes Yes No (Max. TPS: ~ 5)"
Cardano Yes Maybe’o% No (Max. TPS: ~ 10 - 80)*
Solana Not No (O(c))f Unlikely —(Max. TPS: ~ 50K)*
Polkadot Maybe Maybe?o% Unlikely (Max. TPS: ~ 200 - 12K)7
Eth2 Maybe Maybe?o$ Unlikely (Max. TPS: ~ 1K - 62K)]l
Opt.Shard Yes Yes Maybe (Max. TPS: ~ 8K - 350K)$

* Real-world performance of Bitcoin; k &~ 1700 B/s; Txavg =~ 375 B.
#:1.7 Prediction based on 3000 < k < 20000.
§ Assuming 3000 < k£ < 20000 and that child-chains use PoW + PoR with the smallest possible headers.
PoS Unanswered criticisms of PoS (replies) mean that we cannot conclude that PoS is O(n) secure. Saying
PoS is “Maybe” O(n) secure (especially when used in isolation) reflects an optimistic perspective — since
there are unanswered criticisms, we should arguably conclude “No”. (There are no such unanswered

criticisms of PoW-based consensus.)

T PoH is O(c) secure by design. Solana uses PoS on top of PoH, but this is applied after-the-fact and it’s
not clear that a well-placed and well-resourced attacker would require more than O(c) resources.
Additionally, since a < O(c) DoS has brought down Solana before, this is an upper limit on Solana’s

security.

¥ Even though Solana requires k ~ 107 (~ 12 MB/s) for 50K TPS, this is consistent with their published
“strategy” for “scaling”. 50K is chosen as the limit because the official site claims at least 50K as the
upper limit and 400K is known to be beyond Solana’s capabilities. (Note: this also earns Solana a
decisive “No” under the “Decentralized?” column.)

145 of 155

[git] = 43830880 = 2025-07-22

https://web.archive.org/web/20220309063128/https://github.com/zack-bitcoin/amoveo-docs/blob/master/other_blockchains/proof_of_stake.md
https://web.archive.org/web/20220309063254/https://github.com/zack-bitcoin/amoveo-docs/blob/master/other_blockchains/the_defence_of_pos.md
https://web.archive.org/web/20241227202028/https://solana.com/solana-whitepaper.pdf
https://web.archive.org/web/20210914230947/https://solana.com/news/8-innovations-that-make-solana-the-first-web-scale-blockchain
https://web.archive.org/web/20210914230947/https://solana.com/news/8-innovations-that-make-solana-the-first-web-scale-blockchain
https://web.archive.org/web/20220309064429/https://www.cryptosizzle.com/scalability-or-stability-failures-in-the-solana-network-indicate-that-work-is-still-needed/

B UT Variant Complexities
B.1 +PoRs: Explicit PoRs

What is the throughput of the simplex if simplex-chains include explicit proofs of reflection (as
merkle branches) and the headers of reflecting chains?

Let g be the length of the digest in bytes, i.e., the size of the hashes used in our merkle trees.

k1 =kitz + k1B
= ki,te + By - N1+ (Bn + g - [logy N11)
~ kix + By Ni- (B + g -logy Ny)
= Ty =Ni- (ki — By - Ny - (Bp+g-logy, N1))

dT; 1
dTvll = (ki 2= By Ny (g+ By In4) =2 By g Ni-nNp) (63)
which has a zero at:
N kl -In2
1

T 2-Byg- Wo(2P ek -n2)(By - g))
= ki1t # k1B

Note: Wy(z) is the Lambert W function, a.k.a. the product logarithm.

x

Equation 63 gives an Ny that is of the form N; = O(1) - WM. Figure 39 graphs f(x) = W@
for values of x that we care about; f(x) = 0.0638x is included for comparison. Regarding this
specific case, approximating O(ﬁ(k)) = O(k) gives us O(Ny) = O(c) and O(Ty) = O(c?).

108 | -
0107 —a(Wp ()~ o
— 0.0638 -
10° §
4-106 +
5 ORI
= =
10° ¢
2-10° ¢
107 ¢ -
—a(Wo(2)™
— 0.0638 - x
10 4 : : : : : >
0 ‘ ‘ ‘ ‘ ! 2 3 4 5 6 7 8
(a) Using linear axes (b) Using log axes

Figure 39: Graphs of f(x) = ﬁm for x € [102,108].

If we use verkle PoRs instead of merkle PoRs, then we’ll have a different k1 p. Assuming that
vector commitments and proofs are g bytes, and vector locations are 1 byte:

ki = By Ni-(Bp+ (1+g) - loggss N1) (64)

Other than this change, the logic that is used in Equation 63 still works, and the resulting
complexities will be the same.

146 of 155

[git] = 43830880 = 2025-07-22

https://www.wolframalpha.com/input?i=y+%3D+%28k+log%282%29+-+f+x+%28g+%2B+h+log%284%29%29+-+2+f+g+x+log%28x%29%29%2Flog%282%29

B UT VARIANT COMPLEXITIES

Table 21: UT,pors capacity given different parameters.

k, By, By, N, Y TPS; N, S TPS; PoR (B) C' (Hz)
3000, 1/7.5, 112 78 465 7,793 93,516 33 10.4
3000, 1/7.5, 84 96 576 12,877 154,532 33 12.8
3000, 1/15, 112 155 931 31,172 374,075 33 10.3
3000, /15, 84 192 1,153 51,510 618,130 33 12.8
3000, 1/30, 112 276 1,813 121,457 1,457,487 35 9.2
3000, 1/0, 84 328 2,152 192,172 2,306,074 40 10.9
3000, 1/60, 112 511 3,320 444,647 5,335,770 49 8.5
3000, /60, 84 628 3,943 704,122 8,449,470 52 105
20000,1/7.5,112 445 18,797 314,698 25,175,874 47 59.3
20000, 1/7.5, 84 511 22,283 497,403 39,792,300 49 68.1
20000, 1/15, 112 866 35,610 1,192,304 95,384,332 56 57.7
20000,1/15,84 1,023 42256 1,886,448 1.51 x 108 57 68.2
20000, /30,112 1,709 69,282 4,639,446 3.71 x 108 61 56.0
20000, 1/30,84 2,027 82,206 7,339,839 5.87 x 108 61 67.6
20000, 1/60,112 3,327 136,594 18,293,925 1.46 x 10° 63 55.4
20000, /60,84 3,839 161,784 28,890,120 2.31 x 10° 63 63.0
184800, /15,112 7,167 2,874,121 96,231,756 7.11 x 10%° 64 477.8
244200, 1/15,112 9,471 5,011,856 1.68 x 108 1.64 x 10! 65 631.4

B.1.1 +PoRs with +T

Table 22: UT porTs capacity given different parameters.

k, B, By, N, X TPS, N S TPS, PoR (B) C’ (Hz)
3000, /7.5, 112 100 597 13,999 167,999 33 13.3
3000, /7.5, 84 114 681 19,369 232,435 33 15.2
3000, 1/15, 112 199 1,194 56,001 672,013 33 13.3
3000, 1/15, 84 227 1,363 77,479 929,750 33 15.1
3000, /30, 112 337 2,211 207,309 2,487,717 41 11.2
3000, 1/30, 84 373 2,445 277,935 3,335,230 43 12.4
3000, /60, 112 645 4,051 759,584 9,115,011 53 10.8
3000, /60, 84 714 4,480 1,018,358 12,220,304 54 11.9
20000, /7.5, 112 511 22,840 535,320 42,826,399 49 68.1
20000, 1/7.5, 84 600 25,338 719,836 57,586,909 52 80.0
20000,1/15,112 1,023 43,372 2,033,007 1.63 x 108 57 68.2
20000, /15, 84 1,168 48,009 2,727,810 2.18 x 108 58 77.9
20000, /30,112 2,047 84,433 7,915,621 6.33 x 108 61 68.2
20000, 1/30, 84 2,303 93,405 10,614,317 8.49 x 108 62 76.8
20000, 1/60,112 3,839 165,714 31,071,522 2.49 x 10° 63 63.0
20000, 1/60, 84 4,095 182,203 41,409,942 3.31 x 10° 64 68.3
184800, 1/15,112 8,703 3,501,439 1.64 x 105 1.21 x 10! 65 580.2
244200,1/15,112 11,519 6,107,287 2.86 x 108 2.80 x 10!! 65 767.9

B.2 +OP and +OPT

The +OP variants exclude PoRs from simplex-chain blocks. This is reasonable if users running full
nodes are willing to download and temporarily store all blocks from all simplex-chains (this allows
each node to regenerate the PoRs). The PoRs are still processed as part of a chain’s state transition
(each reflecting header will have a corresponding PoR), and are thus provable. Additionally, since
full nodes will need to recalculate these, a suitable P2P protocol will allow PoRs to be requested
from full nodes on an ad-hoc basis.

147 of 155

[git] = 43830880 = 2025-07-22

B.3 +HO and +HOT

The derivations of +OP’s complexity was covered in Section 5.

Table 23: UT,op capacity given different parameters.

k, By, By, N, X TPS; N, Y TPS; PoR (B) C' (Hz)
3000, 1/7.5,112 100 602 10,089 121,073 33 13.4
3000, 1/7.5, 84 133 803 17,936 215,242 33 17.9
3000, /15,112 200 1,205 40,357 484,295 33 13.4
3000, /15, 84 267 1,607 71,747 860,969 34 17.9
3000, /30, 112 401 2,410 161,431 1,937,181 45 13.4
3000, /30, 84 535 3,214 286,989 3,443,877 50 17.9
3000, 1/60, 112 803 4,821 645,727 7,748,724 55 13.4
3000, /60, 84 1,071 6,428 1,147,959 13,775,510 58 17.9
20000, 1/7.5,112 669 26,785 448,421 35,873,724 53 89.3
20000, 1/7.5, 84 892 35,714 797,193 63,775,510 56 119.0
20000, 1/15, 112 1,339 53,571 1,793,686 1.43 x 10% 59 89.3
20000, /15, 84 1,785 71,428 3,188,775 2.55 x 10% 61 119.0
20000, /30,112 2,678 107,142 7,174,744 5.74 x 10® 62 89.3
20000, 1/30, 84 3,571 142,857 12,755,102 1.02 x 10° 63 119.0
20000, 1/60, 112 5,357 214,285 28,698,979 2.30 x 10° 64 89.3
20000, 1/60, 84 7,142 285,714 51,020,408 4.08 x 10° 64 119.0
184800,1/15,112 12,375 4,573,800 1.53 x 10% 1.13 x 10! 65 825.0
244200,1/15,112 16,352 7,986,648 2.67 x 10 2.61 x 10! 65 1,090.2

Table 24: UT opr capacity given different parameters.

k, By, By, WA ¥ TPS; N S TPS; PoR (B) C' (Hz)
3000, /7.5, 112 140 843 19,775 237,304 33 18.8
3000, 1/7.5, 84 170 1,022 29,054 348,657 33 22.7
3000, /15, 112 281 1,687 79,101 949,218 36 18.8
3000, /15, 84 340 2,045 116,219 1,394,628 41 22.7
3000, 1/30, 112 562 3,375 316,406 3,796,875 51 18.8
3000, 1/30, 84 631 4,090 464,876 5,578,512 53 22.7
3000, /60, 112 1,125 6,750 1,265,625 15,187,500 58 18.8
3000, 1/60, 84 1,363 8,181 1,859,504 22,314,049 59 22.7
20000, 1/7.5, 112 937 37,500 878,906 70,312,500 57 125.0
20000, /7.5, 84 1,136 45454 1,291,322 1.03 x 108 58 1515
20000, /15,112 1,875 75,000 3,515,625 2.81 x 108 61 125.0
20000, 1/15, 84 2,272 90,909 5,165,289 4.13 x 108 62 1515
20000, 1/30,112 3,750 150,000 14,062,500 1.13 x 10° 63 125.0
20000, /30, 84 4,545 181,818 20,661,157 1.65 x 10° 64 1515
20000, /60,112 7,500 300,000 56,250,000 4.50 x 10° 65 125.0
20000, 1/s0, 84 9,090 363,636 82,644,628 6.61 x 10° 65 1515
184800,1/15,112 17,325 6,403,320 3.00 x 10% 2.22 x 10! 65 1,155.0
244200, 1/15,112 22,893 11,181,307 5.24 x 108 5.12 x 101! 65 1,526.3

B.3 +4+HO and +HOT

The +HO variants replace the headers of reflecting chains with the respective header’s hash.
This is reasonable since the headers of each simplex-chain (that would otherwise be recorded in
simplex-chain blocks) are common among all simplex-chains. If a user is running nodes for multiple
simplex-chains, they should only need to download each header once — including raw headers in
each block is redundant.

148 of 155

[git] = 43830880 = 2025-07-22

B UT VARIANT COMPLEXITIES

Thus, +HO has k; p of:

ki,p=Ni1-By-g

This is equivalent to +OP with very small headers — 32 bytes instead of 80+ bytes.

Table 25: UT o capacity given different parameters.

(65)

k, By, By Ny > TPS; Ny Y TPS; PoR (B) C' (Hz)
3000, 1/7.5,112 351 2,109 35,313 423,758 42 46.9
3000, 1/7.5,84 351 2,109 47,084 565,011 42 46.9
3000, /15,112 703 4,218 141,252 1,695,033 54 46.9
3000, /15,84 703 4,218 188,337 2,260,044 54 46.9
3000, 1/30,112 1,406 8,437 565,011 6,780,133 60 46.9
3000, 1/30, 84 1,406 8,437 753,348 9,040,178 60 46.9
3000, 1/60, 112 2,812 16,875 2,260,044 27,120,535 63 46.9
3000, /60, 84 2,812 16,875 3,013,392 36,160,714 63 46.9
20000, 1/7.5,112 2,343 93,750 1,569,475 1.26 x 108 62 312.5
20000, 1/7.5,84 2,343 93,750 2,092,633 1.67 x 108 62 312.5
20000, 1/15,112 4,687 187,500 6,277,901 5.02 x 10® 64 312.5
20000, /15,84 4,687 187,500 8,370,535 6.70 x 10% 64 312.5
20000, /30,112 9,375 375,000 25,111,607 2.01 x 10° 65 312.5
20000, /30, 84 9,375 375,000 33,482,142 2.68 x 10 65 312.5
20000, /60,112 18,750 750,000 1.00 x 108 8.04 x 10° 65 312.5
20000, /60, 84 18,750 750,000 1.34 x 108 1.07 x 1019 65 312.5
184800, 1/15,112 43,312 16,008,300 5.36 x 108 3.96 x 10*! 65 2,887.5
244200,1/15,112 57,234 27,953,268 9.36 x 108 9.14 x 10! 65 3,815.6
Table 26: UT gor capacity given different parameters.
k, By, By, Ny 3 TPS, Ny Y TPSy PoR (B) C' (Hz)
3000, 1/7.5,112 703 4,218 98,876 1,186,523 54 93.8
3000, 1/7.5, 84 703 4,218 119,850 1,438,210 54 93.8
3000, /15,112 1,406 8,437 395,507 4,746,093 60 93.8
3000, /15,84 1,406 8,437 479,403 5,752,840 60 93.8
3000, 1/30, 112 2,812 16,875 1,582,031 18,984,375 63 93.8
3000, 1/30, 84 2,812 16,875 1,917,613 23,011,363 63 93.8
3000, 1/60, 112 5,625 33,750 6,328,125 75,937,500 64 93.8
3000, 1/60, 84 5,625 33,750 7,670,454 92,045,454 64 93.8
20000, 1/7.5,112 4,687 187,500 4,394,531 3.52 x 103 64 625.0
20000, 1/7.5, 84 4,687 187,500 5,326,704 4.26 x 108 64 625.0
20000, /15,112 9,375 375,000 17,578,125 1.41 x 10° 65 625.0
20000, /15, 84 9,375 375,000 21,306,818 1.70 x 10° 65 625.0
20000, 1/30, 112 18,750 750,000 70,312,500 5.63 x 10° 65 625.0
20000, 1/30, 84 18,750 750,000 85,227,272 6.82 x 10° 65 625.0
20000, /60, 112 37,500 1,500,000 2.81 x 10® 2.25 x 100 65 625.0
20000, /60, 84 37,500 1,500,000 3.41 x 10 2.73 x 100 65 625.0
184800,1/15,112 86,625 32,016,600 1.50 x 10° 1.11 x 10'2 74 5,775.0
244200,1/15,112 114,468 55,906,537 2.62 x 10° 2.56 x 1012 80 7,631.3

B.4 +HOPoRs and +HOPoRTs
+HOPoRs is the combination of +HO and +PoRs — headers are omitted but PoRs are still

explicitly recorded.

149 of 155

[git] = 43830880 = 2025-07-22

B.4 +HOPoRs and +HOPoRTSs

Thus, +HOPoRs has k; g of:

Merkle PoRs:
Verkle PoRs:

ki,p =B Ni-g-(1+logy Ny)
ki,p = By - Ni-(9+ (g+1)-max(1,logyss N1))

Table 27: UTgopors capacity given different parameters.

k, By, By, N, X TPS; N, Y TPS; PoR (B) C' (Hz)
3000, 1/7.5,112 173 1,038 17,384 208,619 33 23.1
3000, 1/7.5, 84 173 1,038 23,179 278,159 33 23.1
3000, /15,112 273 1,940 64,986 779,834 35 18.2
3000, /15, 84 273 1,940 86,648 1,039,779 35 18.2
3000, /30, 112 502 3,294 220,606 2,647,279 49 16.7
3000, /30, 84 502 3,294 294,142 3,529,705 49 16.7
3000, 1/60, 112 961 6,033 808,020 9,696,249 57 16.0
3000, /60, 84 961 6,033 1,077,361 12,928,333 57 16.0
20000, 1/7.5,112 767 34,040 569,881 45,590,480 55 102.3
20000, 1/7.5, 84 767 34,040 759,841 60,787,306 55 102.3
20000, 1/15, 112 1,535 64,614 2,163,431 1.73 x 108 60 102.3
20000, /15, 84 1,535 64,614 2,884,575 2.31 x 10% 60 102.3
20000, /30,112 2,815 124,703 8,350,697 6.68 x 108 63 93.8
20000, 1/30, 84 2,815 124,703 11,134,263 8.91 x 108 63 93.8
20000, 1/60, 112 5,375 244,038 32,683,743 2.61 x 10° 64 89.6
20000, 1/60, 84 5,375 244,038 43,578,324 3.49 x 10° 64 89.6
184800,1/15,112 12,287 5,159,789 1.73 x 10% 1.28 x 10! 65 819.1
244200,1/15,112 16,127 8,983,624 3.01 x 10 2.94 x 10! 65 1,075.1
Table 28: UTgoporTs capacity given different parameters.
k, By, By, Ny ¥ TPS; N, Y TPS; PoR (B) C' (Hz)
3000, 1/7.5,112 230 1,377 32,286 387,434 33 30.7
3000, /7.5, 84 230 1,377 39,134 469,618 33 30.7
3000, /15,112 326 2,319 108,733 1,304,798 40 21.7
3000, /15, 84 326 2,319 131,797 1,581,574 40 21.7
3000, 1/30, 112 511 3,850 360,976 4,331,721 49 17.0
3000, 1/30, 84 511 3,850 437,547 5,250,571 49 17.0
3000, /60, 112 1,023 7,124 1,335,820 16,029,847 57 17.1
3000, /60, 84 1,023 7,124 1,619,176 19,430,117 57 17.1
20000, 1/7.5,112 966 40,771 955,579 76,446,341 57 128.8
20000, 1/7.5, 84 966 40,771 1,158,277 92,662,232 57 128.8
20000, 1/15, 112 1,791 77,078 3,613,073 2.89 x 108 61 119.4
20000, /15, 84 1,791 77,078 4,379,483 3.50 x 108 61 119.4
20000, 1/30,112 3,327 148,711 13,941,710 1.12 x 10° 63 110.9
20000, 1/30, 84 3,327 148,711 16,899,042 1.35 x 10° 63 110.9
20000, 1/60, 112 6,143 288,296 54,055,558 4.32 x 10° 64 102.4
20000, /60, 84 6,143 288,296 65,521,889 5.24 x 107 64 102.4
184800, /15,112 14,335 6,128,357 2.87 x 108 2.12 x 10! 65 955.7
244200,1/15,112 18,687 10,647,792 4.99 x 108 4.88 x 10! 65 1,245.8
150 of 155

[git] = 43830880 = 2025-07-22

(66)

C CEC EXPERIMENT EXTRA

C CEC Experiment Extra
C.1 Results with ¢ = 0.48

Figure 40 shows results of the simulation for ¢ = 0.48. Unlike earlier figures, this figure uses
¢ = 20 as the basis for comparison instead of ¢ = 5 to accommodate the extended duration of
attacks performed by an attacker close to 50% of the global hash-rate. These results do converge as
predicted by the CEC, but not as closely as the results in Section 4.10.4.

PoR Confirmation Equivalence Conjecture (Extended)
VYa€[1l,N]:P'(q;c =%; N; = a) is approximately constant
If the CEC is true, then these plots should align

Traditional Confirmations (PoR Equivalent via CEC)

0 100 200 300 400 500 600
1.0 ! . L . ! .

\\ ==y = P(q; c=20x) --- Trad: g = 0.48 (Analytical Solution: Rosenfeld, 2012)
0.8 \ #= y = P'(q;c=20x; Ny =1) --- Trad: g=0.48; Bf'* = 75; DAAy =500; (n = 9000)

—#— y =P'(q;c=5;N;=x-4) ---PoR: q=0.48; Bf' =75; DAAy =500; (n=9000)
—— y = P'(g;c=10; Ny =x-2) --- PoR: g =0.48; B/ =75; DAAy = 500; (n = 9000)
—_—C—
<o

o
o
|

y =P'(q;c=20;N;=x) ---PoR: q=0.48; Bf1=75; DAAy=500; (n = 9000)

o
N
L

0.2 4

Probability of a successful doublespend

°

o
S}
N A
N
oA
o
[
o
=
N

14 16 18 20 22 24 26 28 30
Simplex Ny

Figure 40: Main results for ¢ = 0.48 for the experiment documented in Section 4.10.4

Blockchain security breaks down at ¢ > 0.5, so, as ¢ — 0.5 we should expect that previously
insignificant implementation details become more and more significant. Any previously insignificant
advantages for the honest network or the attacker (at lower values of ¢) can become substantial as
g approaches that threshold. It might be possible to further refine the simulation (via additional
iterations and error corrections), but at some point it’s not worth it.

So we should expect the simulation to lose accuracy as ¢ — 0.5. Given this, it seems reasonable to
conclude that Figure 40 is consistent with the CEC’s predictions, albeit with the caveat of lower
accuracy.

C.2 Simulator Iteration

The purpose of this section is to avoid excluding all but the best results, and to document the steps
taken that increased the accuracy of the simulation.

Other than the major changes discussed in Section C.2.1 and on, many other configurations were
also tested to establish that certain implementation details were not significant. These include:

o Hashing algorithm: xxh3 was compared against blake3 and sha256. No significant differences
were observed.

e B JFl: No significant difference was found for values of 50, 75, and 100. The final value of
75 was, in part, chosen to ensure there was sufficient excess capacity in B f_l (so that it did
not affect results). Lower values (e.g., 10) seemed to work okay during early testing, but also
result in more blocks being generated simultaneously.

e H: this value is important because ¢ - H should result in a whole number. If H is too small,
or ¢ - H is not a whole number, loss of precision occurs. H = 50 is sufficient to test values of

151 of 155

[git] = 43830880 = 2025-07-22

C.2 Simulator Iteration

q that are multiples of 0.02. H = 75 works for values of ¢ that are multiples of 0.04, and was
chosen over H = 50 to ensure excess capacity.

e Iteration between H and B f_lz the difficulty is the number of hashes to find a block, which,
before the attack starts, is ~H - Bf_l. Thus, H = Bf_l = 75 is about half the computation
cost of using H = Bfil = 100. Smaller values for both could work, but risks invalidating
results if either is too small.

C.2.1 Initial Results

PoR Simulator: Early Results

Traditional Blockchain Confirmations (~ time)

0 50 100 150 200 250 300 350 400
0.5 ‘ 1 1 1 1 1 1 1 1
\ ==y = P(q;c=20x) --- Trad: g = 0.44 (Analytical Solution: Rosenfeld, 2012)
‘\ ==y = P'(q;c=20x; N, =1) --- Trad: g =0.44; B,‘1 =50; DAAy =100; (n=1000)
0.4 7 v —— y=Pl(q;c=20;N;=x) --PoR: q=0.44; B/} = 50; DAAy = 100; (n = 2000)

0.3 4

0.2 1

0.1 A

Probability of a successful doublespend

0.0 T T T T T v T v T T T T
0 2 4 6 8 10 12 14 16 18 20

Simplex N;

Figure 41: Early results showed that, although P’(q,c = Cxz, Ny = 1) — 0 as expected (traditional
chains), P'(q,c = C,N; = z) did not approach 0 as N; increased (simplexes). This was prior to
the substantive error corrections shown in subsequent figures.

152 of 155

[git] = 43830880 = 2025-07-22

C CEC EXPERIMENT EXTRA

C.2.2 Accounting for Draft Reflecting Work

Probability of a successful doublespend

PoR Simulator: Early Results -- Accounting for Draft Reflected Work (DRW)

Traditional Blockchain Confirmations (~ time)

0 50 100 150 200 250 300 350 400

0.45
\ == y=P(qc=20x) --- Trad: g = 0.44 (Analytical Solution: Rosenfeld, 2012)

0.401 ‘\ —e— y=P(q;c=20;N;=x) ---PoR: q=0.44; B! =50; DAAy = 100; (n =2000) no DRW
0.35 1 \ y =P'(q;c=20;N;=x) --PoR: g=0.44; Bf‘1 =50; DAAy =100; (n=3000) w/ DRW
0.30 4
0.25 4
0.20 4
0.15 4
0.10 4
0.05 4
0.00 T T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20

Simplex Ny

Figure 42: Early results (legend: ‘no DRW’) did not show P’ — 0 as N; increased. This was fixed
after accounting for draft reflected work (‘w/ DRW’) in the function that determines whether an
attack has succeeded. The significance of this is explained in Section 4.10.3.

C.2.3 Attacker’s Hash-Rate Distribution: Uniform vs Random

Probability of a successful doublespend

PoR Simulator: Early Results -- Randomizing Hash-rates

Traditional Blockchain Confirmations (~ time)

0 20 40 60 80 100
0.45 -
\ == y=P(q;c=5x) --- Trad: g = 0.40 (Analytical Solution: Rosenfeld, 2012)
0.40 \ —+— y=P(gc=5N;=x) --PoR: q=0.40; B;! = 50; DAAy = 100; (n = 3000) Uniform HRs
0.35 1 !—w— y=Plgic=5;Ny=x) - PoR: g=0.40; B7 =50; DAAy = 100; (n = 3000) Random HRs
0.30 4
0.25 1
0.20
0.15 4
0.10 4
0.05 1
0.00 | | | | . . i e
0 2 4 6 8 10 12 14 16 18 20

Simplex Ny

Figure 43: These results indicate that simplexes are more secure when an attacker has the same
hash-rate over all simplex-chains. Randomizing hash-rates (of both the honest network and the
attacker) over all simplex-chains, while globally maintaining p + ¢ = 1, improves the accuracy of
the simulation with respect to the CEC’s predictions.

When hash-rates are uniformly distributed: the miners of each chain do H hashes per tick, and the
attacker does g - H of those hashes per tick.

When hash-rates are randomly distributed: for all chains but the primary chain, H - (N7 — 1) hashes

153 of 155

[git] = 43830880 = 2025-07-22

C.2 Simulator Iteration

per tick are distributed randomly over those chains, with the attacker responsible for ¢- H - (N7 — 1)
of those hashes per tick. Some chains will have a hash-rate greater than H hashes per tick, and
some chains fewer. It’s possible for an attacker to have any proportion of a particular chain’s
hash-rate, but p + ¢ = 1 is maintained globally. Both the attacker’s and honest miners’ hash-rates
are uniformly distributed, and thus the hash-rate of each chain has a trapezoidal distribution.
PMFs of the hash-rate of each chain, the honest miners, and the attacker can be obtained via make
print-randhr-pmfs.

C.2.4 The Attacker’s “Bonus Block”

PoR Simulator: Early Results -- Bonus Block

Traditional Blockchain Confirmations (~ time)

0 20 40 60 80 100
0.7 4— X
\‘ ==y =P(q;c=5x) --- Trad: g = 0.40 (Analytical Solution: Rosenfeld, 2012)
0.64 1\ ==y =P(q;c=5x;N;=1) --Trad: g=0.40; B! = 50; DAAy = 100; (n = 3300) No Bonus Block

—#— y=P(q;c=5N;=x) --PoR: g=0.40; B! =50; DAAy = 100; (n = 3000) No Bonus Block
==y = P'(q;c=5x;N; =1) ---Trad: g=0.40; Bf‘1 =75; DAAy =100; (n =9000) +Bonus Block
--- PoR: q=0.40; B;* = 75; DAAy = 100; (n = 9000) +Bonus Block

o
n
L

© o
[N) W
N L

Probability of a successful doublespend
o
=

T T T T

2 4 6 8 10 12 14 16 18 20
Simplex Ny

o
<)

o

Figure 44: In general, an attacker has the opportunity to prepare for a doublespend attack.
Particularly, they can wait to mine their first private block before making the public transaction
(which is the target of the doublespend). When the attacker waits to mine this first private
block before starting the attack, it’s called (in this paper) the “bonus block”. Implementing this
substantially increased the accuracy of the simulation with respect to the CEC’s predictions for
smaller values of ¢ and/or Nj.

154 of 155

[git] = 43830880 = 2025-07-22

C CEC EXPERIMENT EXTRA

C.2.5 Effects of DAA

PoR Simulator: Early Results -- DAAy = 100-500

Traditional Blockchain Confirmations (~ time)

0 20 40 60 80 100
0.7 L I L L L
2 ==y = P(q; c=5x) --- Trad: g = 0.40 (Analytical Solution: Rosenfeld, 2012)
[}
5 0.6 == y =P'(q;c=5x;N;=1) --Trad: g =0.40; Bf* =75; DAAy =20; (n =9000)
% ==y = P'(q;c=5x;N;=1) ---Trad: g=0.40; Bf‘1 =75; DAAy =100; (n=9000)
5057 == y =P/(q;c=5x;Ny=1) --Trad: g=0.40; B/ = 75; DAAy = 500; (n = 9000)
2
@ 0.4
g,j Trad. Before (DAAy = 100) |
2 0.3 1
© [Trad. After (DAAy =500)]
o
> 0.2 A
5
® 0.1
g Trad. DAAy = 20
0.0 T T T T T T - T — T
0 2 4 6 8 10 12 14 16 18 20

Simplex Ny

Figure 45: This was the last iteration prior to generating the final results (Section 4.10.4.5). Early
results indicated that lower values of DAA N were more secure for traditional chains, and that
DAA N & 500 was sufficient for results to closely match the analytical solution. DAA y is not as
significant for the security of simplexes and PoR. Results for DAA = 20 are included to better
demonstrate the effect of increasing DAA .

155 of 155

[git] = 43830880 = 2025-07-22

	Introduction
	The Blockchain Trilemma
	Core Conflict
	Conjecture: A Principle of Scaling

	Ultra Terminum
	Paper Roadmap

	Proof of Reflection
	A Projection of Bitcoin in Ethereum
	Incrementally Implementing Proof of Reflection
	Step 1. Chain R Images Chain L
	Step 2. L Images R
	Step 3. A Reflection of L in R
	Step 4. One Way Reflection
	Step 5. Mutual Reflection

	Comparing Incomparable Proofs of Work
	Theoretical Conversion
	Converting Block-Weights
	Hold Up! We Need to Talk About LfRf and RrLr XRL
	Conversions and Sums

	Conversion Contexts
	A Single Root Token Across Multiple Chains
	Degenerate Case

	Different Root Tokens with a DEX
	What About SPV?

	Converting Confirmations
	Coins per Confirmation

	Reflection Between PoW and PoS Chains
	Counting Work

	UTᵢ: Constructing Ultra Terminum
	Generalizing Reflection
	UT₁: The Simplex
	UT₁: Scaling Complexity Intuition
	UT₂: Dapp-chains
	Dapp-chain Security
	Spam, Availability, and Dapp-chains: A PoW/PoS Asymmetry

	Three General Incentive Models for Dapp-chain Reflection
	Method 1: Pay the simplex miner on the dapp-chain
	Method 2: Pay the simplex miner via a native DEX
	Method 3: Pay the simplex miner directly

	PoS Dapp-chains
	Going Further
	Dapp-chain Simplexes
	UT₃: Dapp-dapp-chains

	Practical Considerations for UT's Design
	The Availability of Reflected Blocks
	The Axiom of Availability
	Bandwidth Requirements

	Proving Reflection
	Segmented State
	Exploiting Segmented State
	Hash Compression & Truncation

	Stateless Full Nodes and Fraud Proofs
	The PoR Graph
	Maximally Reflective PoR Graphs
	Optimization or Contradiction?
	
	The Longest PoR Chain
	Generalizing NIPoPoWs
	NIPoPoWs Primer
	Non-Interactive Proofs of Proof of Work Reflection (NIPoPoWRs)

	Confirmation Times
	DoS and DAGs
	Block-DAG Lineage
	Basic Structure
	Block-DAGs Prevent DoS Attacks
	A Criticism of GHOST
	Merging Histories
	Adapted NIPoPoWs for Block-DAGs: NIPoPPoWs
	Block-DAG Interaction With The PoR Graph
	Axiom of Unified Ancestry
	DoS Attacks

	NIPoPPoWs + NIPoPoWRs
	Integrating Fraud Proofs

	Lowering Block Production Variance
	Simplex Security and the Confirmation Equivalence Conjecture
	Simplex Security
	Confirmation Equivalence Conjecture
	Generalizing Doublespends
	Testing the Confirmation Equivalence Conjecture
	Hypothesis
	Method
	Error Correction Iteration
	Validating the Model
	Results
	Conclusions

	Closed Form of P'

	Intra-Simplex Cross-Chain Transactions
	Introduction
	Why does SPV work for Bitcoin?
	Method
	Context
	Construction
	Evaluation

	Decoupled State Progression
	Fraud Proofs & Bribe Attacks: Derivations & Breakpoints
	Phase 1 Phase 2 on the Target Chain
	Phase 1 Phase 2 and (z)
	Phase 1 Phase 2
	Phase 2 Phase 3

	Expedited Transactions
	Protocol Design
	Security of Confirmations
	Transaction Execution Order

	C′ and Time to First Confirmation
	Effect on Chain-Capacity

	Initial Configuration

	Scaling Complexity Analysis of Ultra Terminum
	Analysis Methodology
	Complexity of O(c) Chains
	Optimistic Complexity of O(c²) Chains
	Effective Header Size

	Complexity of UT₁
	Dapp-Chains and the Complexity of UT₂ and UT₃
	Dapp-Chains
	UT with Dapp-Chains (UT₂)
	UT with Dapp-Dapp-Chains (UT₃)

	Complexity of Cross-Chain SPV Proofs & Proofs of Reflection
	Cross-Chain SPV Proofs
	Proofs of Reflection

	TPS Complexity Comparison
	Bandwidth Complexity
	Full Node
	PoR Graph
	Complete Simplex

	The Impact of Header Size
	Comparison of UT Variants

	UT-aleph: Tiling Simplexes
	Simplex Tilings
	Tile Valence
	Tree-Tilings
	Recursive Proof of Reflection
	Simple Recursive PoR: L ↔ M ↔ R
	Recursive PoR with Multiple Paths
	Data Availability

	Tree-Tiling Security
	Key Concepts
	Local Chain-work, Tile-work, and Unit Tile
	The Core

	Security Architecture
	Inter-tile Security Relationship
	Total Work Across a Tiling
	Doublespend Requirements

	Analysis
	The Core is (Almost) as Secure as the Network
	Limiting the Number of Children of the Root Tile

	Severing Tiles
	Analysis Conclusion

	Security Propagation Speed / Finalization

	Scaling Complexity
	Capacity
	Recursive PoRs
	Bandwidth

	Attacks
	Dialog: Attacks and Mitigation

	Conclusions
	Addressing the Blockchain Trilemma
	Addressing the Stronger Trilemma
	Terminus Est

	Criticisms of UT
	Open Problems
	Dapp-chains & PoS
	UTℵ Block Availability O(c² log n) Bandwidth

	Mitigated Risks
	A Key Point for UT₁ Is Flawed
	UT₁ O(c²) Bandwidth

	Notation, Nomenclature
	Glossary
	List of Figures, Tables
	References
	Comparison: ``The Big 4''
	UT Variant Complexities
	+PoRs: Explicit PoRs
	+PoRs with +T

	+OP and +OPT
	+HO and +HOT
	+HOPoRs and +HOPoRTs

	CEC Experiment Extra
	Results with q = 0.48
	Simulator Iteration
	Initial Results
	Accounting for Draft Reflecting Work
	Attacker's Hash-Rate Distribution: Uniform vs Random
	The Attacker's ``Bonus Block''
	Effects of DAA_N

